Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 24(6): 497-504, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12791174

RESUMEN

AIM: To constructed a three-dimensional (3D) model for the 3C like (3CL) proteinase of SARS coronavirus (SARS-CoV), and to design inhibitors of the 3CL proteinase based on the 3D model. METHODS: Bioinformatics analyses were performed to search the homologous proteins of the SARS-CoV 3CL proteinase from the GenBank and PDB database. A 3D model of the proteinase was constructed by using homology modeling technique. Targeting to the 3D model and its X-ray crystal structure of the main proteinase (Mpro) of transmissible gastroenteritis virus (TGEV), virtual screening was performed employing molecular docking method to identify possible 3CL proteinase inhibitors from small molecular databases. RESULTS: Sequence alignment indicated that the SARS-CoV 3CL proteinase was extremely homologous to TGEV Mpro, especially the substrate-binding pocket (active site). Accordingly, a 3D model for the SARS-CoV 3CL proteinase was constructed based on the crystal structure of TGEV Mpro. The 3D model adopts a similar fold of the TGEV Mpro, its structure and binding pocket feature are almost as same as that of TGEV Mpro. The tested virtual screening indicated that 73 available proteinase inhibitors in the MDDR database might dock into both the binding pockets of the TGEV Mpro and the SARS-CoV 3CL proteinase. CONCLUSIONS: Either the 3D model of the SARS-CoV 3CL proteinase or the X-ray crystal structure of the TGEV Mpro may be used as a starting point for design anti-SARS drugs. Screening the known proteinase inhibitors may be an appreciated shortcut to discover anti-SARS drugs.


Asunto(s)
Cisteína Endopeptidasas/química , Inhibidores de Cisteína Proteinasa/aislamiento & purificación , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Biología Computacional , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Diseño de Fármacos , Humanos , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/aislamiento & purificación , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína , Virus de la Gastroenteritis Transmisible/química
2.
Acta Pharmacol Sin ; 24(6): 505-11, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12791175

RESUMEN

AIM: To obtain the pure sample of SARS small envelope E protein (SARS E protein), study its properties and analyze its possible functions. METHODS: The plasmid of SARS E protein was constructed by the polymerase chain reaction (PCR), and the protein was expressed in the E coli strain. The secondary structure feature of the protein was determined by circular dichroism (CD) technique. The possible functions of this protein were annotated by bioinformatics methods, and its possible three-dimensional model was constructed by molecular modeling. RESULTS: The pure sample of SARS E protein was obtained. The secondary structure feature derived from CD determination is similar to that from the secondary structure prediction. Bioinformatics analysis indicated that the key residues of SARS E protein were much conserved compared to the E proteins of other coronaviruses. In particular, the primary amino acid sequence of SARS E protein is much more similar to that of murine hepatitis virus (MHV) and other mammal coronaviruses. The transmembrane (TM) segment of the SARS E protein is relatively more conserved in the whole protein than other regions. CONCLUSION: The success of expressing the SARS E protein is a good starting point for investigating the structure and functions of this protein and SARS coronavirus itself as well. The SARS E protein may fold in water solution in a similar way as it in membrane-water mixed environment. It is possible that beta-sheet I of the SARS E protein interacts with the membrane surface via hydrogen bonding, this beta-sheet may uncoil to a random structure in water solution.


Asunto(s)
Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Proteínas del Envoltorio Viral/genética , Dicroismo Circular , Biología Computacional , Coronavirus Humano 229E/química , Coronavirus Bovino/química , Coronavirus Canino/química , Humanos , Modelos Moleculares , Virus de la Hepatitis Murina/química , Conformación Proteica , Estructura Secundaria de Proteína , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/aislamiento & purificación , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...