Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 36(6): 2799-2809, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38558920

RESUMEN

Gelation by small molecules is a topic of enormous importance in catalysis, nanomaterials, drug delivery, and pharmaceutical crystallization. The mechanism by which gelators self-organize into a fibrous gel network is poorly understood. Herein, we describe the crystal structures and gelation properties of a library of bis(urea) compounds and show, via molecular dynamics simulations, how gelator aggregation progresses from a continuous pattern of supramolecular motifs to a homogeneous fiber network. Our model suggests that lamellae with asymmetric surfaces scroll into uniform unbranched fibrils, while sheets with symmetric surfaces undergo stacking to form crystals. The self-assembly of asymmetric lamellae is associated with specific molecular features, such as the presence of narrow and flexible end groups with high packing densities, and likely represents a general mechanism for the formation of small-molecule gels.

2.
Inorg Chem ; 62(51): 20940-20947, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078891

RESUMEN

Controlling the orientation of complex molecules in molecular junctions is crucial to their development into functional devices. To date, this has been achieved through the use of multipodal compounds (i.e., containing more than two anchoring groups), resulting in the formation of tri/tetrapodal compounds. While such compounds have greatly improved orientation control, this comes at the cost of lower surface coverage. In this study, we examine an alternative approach for generating multimodal compounds by binding multiple independent molecular wires together through metal coordination to form a molecular bundle. This was achieved by coordinating iron(II) and cobalt(II) to 5,5'-bis(methylthio)-2,2'-bipyridine (L1) and (methylenebis(4,1-phenylene))bis(1-(5-(methylthio)pyridin-2-yl)methanimine) (L2) to give two monometallic complexes, Fe-1 and Co-1, and two bimetallic helicates, Fe-2 and Co-2. Using XPS, all of the complexes were shown to bind to a gold surface in a fac fashion through three thiomethyl groups. Using single-molecule conductance and DFT calculations, each of the ligands was shown to conduct as an independent wire with no impact from the rest of the complex. These results suggest that this is a useful approach for controlling the geometry of junction formation without altering the conductance behavior of the individual molecular wires.

3.
Chem Sci ; 14(41): 11389-11401, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37886106

RESUMEN

Pathway complexity results in unique materials from the same components according to the assembly conditions. Here a chiral acyl-semicarbazide gelator forms three different gels of contrasting fibre morphology (termed 'gelmorphs') as well as lyotropic liquid crystalline droplets depending on the assembly pathway. The gels have morphologies that are either hyperhelical (HH-Gel), tape-fibre (TF-Gel) or thin fibril derived from the liquid crystalline phase (LC-Gels) and exhibit very different rheological properties. The gelator exists as three slowly interconverting conformers in solution. All three gels are comprised of an unsymmetrical, intramolecular hydrogen bonded conformer. The kinetics show that formation of the remarkable HH-Gel is cooperative and is postulated to involve association of the growing fibril with a non-gelling conformer. This single molecule dynamic conformational library shows how very different materials with different morphology and hence very contrasting materials properties can arise from pathway complexity as a result of emergent interactions during the assembly process.

4.
Inorg Chem ; 62(31): 12356-12371, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498694

RESUMEN

A series of seven new platinum(II) complexes PtLnCl have been prepared, where Ln is an NCN-coordinating ligand comprising a benzene ring 1,3-disubstituted with two different azaheterocycles. In PtL1-5Cl, one heterocycle is a simple pyridine ring, while the other is an isoquinoline, a quinoline, a pyrimidine (L1, L2, L3), or a p-CF3- or p-OMe-substituted pyridine (L4 and L5). PtL6Cl incorporates both a p-CF3 and a p-OMe-substituted pyridine. The synthesis of the requisite proligands HLn is achieved using Pd-catalyzed cross-coupling methodology. The molecular structures of six of the Pt(II) complexes have been determined by X-ray diffraction. All the complexes are brightly luminescent in deoxygenated solution at room temperature. The absorption and emission properties are compared with those of the corresponding symmetrical complexes featuring two identical heterocycles, PtLnsymCl, and of the parent Pt(dpyb)Cl containing two unsubstituted pyridines [dpybH = 1,3-di(2-pyridyl)benzene]. While the absorption spectra of the nonsymmetrical complexes show features of both PtLnsymCl and Pt(dpyb)Cl, the emission generally resembles that of whichever of the corresponding symmetrical complexes has the lower-energy emission. PtL1Cl differs in that─at room temperature but not at 77 K─it displays emission bands that can be attributed to excited states involving both the pyridine and the isoquinoline rings, despite the latter being unequivocally lower in energy. This unusual behavior is attributed to thermally activated repopulation of the former excited state from the latter, facilitated by the very long-lived nature of the isoquinoline-based excited state. At elevated concentrations, all the complexes show an additional red-shifted emission band attributable to excimers. For PtL1Cl, the excimer strikingly dominates the emission spectra at all but the lowest concentrations (<10-5 M). Trends in the energies of the excimers and their propensity to form are compared with those of the symmetrical analogues.

5.
Cryst Growth Des ; 23(4): 2860-2869, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37038399

RESUMEN

The materials property of ferroelectricity is intimately linked with symmetry-changing phase transitions. Characterizing such transitions is therefore essential for understanding molecular ferroelectrics. In this paper, we explore the temperature and thermal history dependence of polymorphic phase transitions in the multiaxial molecular ferroelectric 18-crown-6 oxonium tetrachloro-gallium(III). We have solved the structures of two previously suggested polymorphs (D and Y) ab initio from high-temperature powder diffraction data. We also report the structure of a new polymorph (X) using low-temperature powder diffraction data and identify a fifth (W) that can form on cooling. These polymorphs can be related using two distinct group-subgroup trees. Structure types A-C observed in this and related compounds can be derived from high-temperature polymorph D by group-subgroup relationships. The X and Y polymorphs can be described as child structures of a hypothetical polymorph Z using a molecular rotational distortion mode description. The ferroelectric properties of the various polymorphs can be rationalized based on our structural findings.

6.
Cryst Growth Des ; 23(4): 2628-2633, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37038401

RESUMEN

A porous, nonsolvated polymorph of the voltage-gated sodium channel blocker mexiletine hydrochloride absorbs iodine vapor to give a pharmaceutical cocrystal incorporating an I2Cl- anion that forms a halogen-π interaction with the mexiletine cations. The most thermodynamically stable form of the compound does not absorb iodine. This example shows that vapor sorption is a potentially useful and underused tool for bringing about changes in pharmaceutical solid form as part of a solid form screening protocol.

7.
Nat Chem ; 15(4): 516-525, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36879076

RESUMEN

The balance between strain relief and aromatic stabilization dictates the form and function of non-planar π-aromatics. Overcrowded systems are known to undergo geometric deformations, but the energetically favourable π-electron delocalization of their aromatic ring(s) is typically preserved. In this study we incremented the strain energy of an aromatic system beyond its aromatic stabilization energy, causing it to rearrange and its aromaticity to be ruptured. We noted that increasing the steric bulk around the periphery of π-extended tropylium rings leads them to deviate from planarity to form contorted conformations in which aromatic stabilization and strain are close in energy. Under increasing strain, the aromatic π-electron delocalization of the system is broken, leading to the formation of a non-aromatic, bicyclic analogue referred to as 'Dewar tropylium'. The aromatic and non-aromatic isomers have been found to exist in rapid equilibrium with one another. This investigation demarcates the extent of steric deformation tolerated by an aromatic carbocycle and thus provides direct experimental insights into the fundamental nature of aromaticity.

8.
Nat Chem ; 15(5): 615-624, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36914791

RESUMEN

Stereogenic sp3-hybridized carbon centres are fundamental building blocks of chiral molecules. Unlike dynamic stereogenic motifs, such as sp3-nitrogen centres or atropisomeric biaryls, sp3-carbon centres are usually fixed, requiring intermolecular reactions to undergo configurational changes. Here we report the internal enantiomerization of fluxional carbon cages and the consequences of their adaptive configurations for the transmission of stereochemical information. The sp3-carbon stereochemistry of the rigid tricyclic cages is inverted through strain-assisted Cope rearrangements, emulating the low-barrier configurational dynamics typical for sp3-nitrogen inversion or conformational isomerism. This dynamic enantiomerization can be stopped, restarted or slowed by external reagents, while the configuration of the cage is controlled by neighbouring, fixed stereogenic centres. As part of a phosphoramidite-olefin ligand, the fluxional cage acts as a conduit to transmit stereochemical information from the ligand while also transferring its dynamic properties to chiral-at-metal coordination environments, influencing catalysis, ion pairing and ligand exchange energetics.

9.
Inorg Chem ; 62(4): 1306-1322, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36644812

RESUMEN

Platinum(II) complexes of NNC-cyclometalating ligands based on 6-phenyl-2,2'-bipyridine (HL1) have been widely investigated for their luminescence properties. We describe how PtL1Cl and five analogues with differently substituted aryl rings, PtL2-6Cl, can be oxidized with chlorine and/or iodobenzene dichloride to generate Pt(IV) compounds of the form Pt(NNC-Ln)Cl3 (n = 1-6). The molecular structures of several of them have been determined by X-ray diffraction. These PtLnCl3 compounds react with 2-arylpyridines to give a new class of Pt(IV) complex of the form [Pt(NNC)(NC)Cl]+. Elevated temperatures are required, and the reaction is accompanied by competitive reduction processes and generation of side-products; however, four examples of such complexes have been isolated and their molecular structures determined. Reaction of PtL1Cl3 with HL1 similarly generates [Pt(NNC-L1)2]2+, which we believe to be the first example of a bis-tridentate Pt(IV) complex. The lowest-energy bands in the UV-vis absorption spectra of all the PtLnCl3 compounds are displaced to higher energy relative to the Pt(II) precursors, but they red-shift with the electron richness of the aryl ring, consistent with predominantly 1[πAr → π*NN] character to the pertinent excited state. A similar trend is observed for the [Pt(NNC)(NC)Cl]+ complexes. They display phosphorescence in solution at room temperature, centered around 500 nm for [PtL1(ppy)Cl]+ and [Pt(L1)2]2+, and 550 nm for methoxy-substituted derivatives. The lifetimes are in the microsecond range, rising to hundreds of microseconds at 77 K, consistent with triplet excited states of primarily 3[πAr → π*NN] character with relatively little participation of the metal.

10.
ACS Omega ; 8(51): 48958-48965, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38162767

RESUMEN

The present work provides an insight into the effect of connectivity isomerization of metal-2,2'-bipyridine complexes. For that purpose, two new 2,2'-bipyridine (bpy) ligand systems, 4,4'-bis(4-(methylthio)phenyl)-2,2'-bipyridine (Lmeta) and 5,5'-bis(3,3-dimethyl-2,3-dihydrobenzothiophen-5-yl)-2,2'-bipyridine (Lpara) were synthesized and coordinated to rhenium and manganese to obtain the corresponding complexes MnLmeta(CO)3Br, ReLmeta(CO)3Br, MnLpara(CO)3Br, MoLpara(CO)4 and ReLpara(CO)3Br. The experimental and theoretical results revealed that coordination to the para system, i.e., the metal ion peripheral to the conductance path, gave a slightly increased conductance compared to the free ligand attributed to the reduced highest occupied molecular orbital (HOMO)-least unoccupied molecular orbital (LUMO) gap. The meta-based system formed a destructive quantum interference feature that reduced the conductance of a S···S contacted junction to below 10-5.5Go, reinforcing the importance of contact group connectivity for molecular wire conductance.

11.
Chem Sci ; 13(45): 13600-13610, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36507161

RESUMEN

We present a study of aggregate excited states formed by complexes of the type Pt(N^C^N)X, where N^C^N represents a tridentate cyclometallating ligand, and X = SCN or I. These materials display near-infrared (NIR) photoluminescence in film and electroluminescence in NIR OLEDs with λ max EL = 720-944 nm. We demonstrate that the use of X = SCN or I modulates aggregate formation compared to the parent complexes where X = Cl. While the identity of the monodentate ligand affects the energy of Pt-Pt excimers in solution in only a subtle way, it strongly influences aggregation in film. Detailed calculations on aggregates of different sizes support the experimental conclusions from steady-state and time-resolved luminescence studies at variable temperatures. The use of X = I appears to limit aggregation to the formation of dimers, while X = SCN promotes the formation of larger aggregates, such as tetramers and pentamers, leading in turn to NIR photo- and electroluminescence > 850 nm. A possible explanation for the contrasting influence of the monodentate ligands is the lesser steric hindrance associated with the SCN group compared to the bulkier I ligand. By exploiting the propensity of the SCN complexes to form extended aggregates, we have prepared an NIR-emitting OLED that shows very long wavelength electroluminescence, with λ max EL = 944 nm and a maximum EQE = 0.3 ± 0.1%. Such data appear to be unprecedented for a device relying on a Pt(ii) complex aggregate as the emitter.

12.
Cryst Growth Des ; 22(11): 6775-6785, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36345390

RESUMEN

We report an approach to obtain drug-mimetic supramolecular gelators, which are capable of stabilizing metastable polymorphs of the pharmaceutical salt mexiletine hydrochloride, a highly polymorphic antiarrhythmic drug. Solution-phase screening led to the discovery of two new solvated solid forms of mexiletine, a type C 1,2,4-trichlorobenzene tetarto-solvate and a type D nitrobenzene solvate. Various metastable forms were crystallized within the gels under conditions which would not have been possible in solution. Despite typically crystallizing concomitantly with form 1, a pure sample of form 3 was crystallized within a gel of ethyl methyl ketone. Various type A channel solvates were crystallized from gels of toluene and ethyl acetate, in which the contents of the channels varied from those of solution-phase forms. Most strikingly, the high-temperature-stable form 2 was crystallized from a gel in 1,2-dibromoethane: the only known route to access this form at room temperature. These results exemplify the powerful stabilizing effect of drug-mimetic supramolecular gels, which can be exploited in pharmaceutical polymorph screens to access highly metastable or difficult-to-nucleate solid forms.

13.
Cryst Growth Des ; 22(10): 6262-6266, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36217416

RESUMEN

Miltefosine is a repurposed anticancer drug and currently the only orally administered drug approved to treat the neglected tropical disease leishmaniasis. Miltefosine is hygroscopic and must be stored at subzero temperatures. In this work, we report the X-ray structures of miltefosine monohydrate and methanol solvate, along with 12- and 14-carbon chain analogue hydrates and a solvate. The three hydrates are all isostructural and are conformational isomorphs with Z' = 2. Water bridges the gap between phosphocholine head groups caused by the interdigitated bilayer structure. The two methanol solvates are also mutually isostructural with the head groups adopting a more extended conformation. Again, the solvent bridges the gap between head groups in the bilayer. No anhydrous form of miltefosine or its analogues were isolated, with dehydration resulting in significantly reduced crystallinity. This arises as a result of the integral role that hydrogen-bond donors (in the form of water or solvent molecules) play in the stability of the zwitterionic structures.

14.
Cryst Growth Des ; 22(10): 6190-6200, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36217417

RESUMEN

A hair care mixture formed from a gluconamide derivative and 3-hydroxypropyl ammonium gluconate is known to strengthen hair fibers; however, the mechanism by which the mixture affects hair is unknown. To give insight into the aggregation of the target gluconamide and potential interactions between the gluconate-derived mixture and hair fibers, a range of systems were characterized by X-ray crystallography namely two polymorphic forms of the target gluconamide and three salts of 3-hydroxypropylammonium with sulfuric acid, methane sulfonic acid, and oxalic acid. The gluconamide proves to aggregate and becomes a supramolecular gelator in aniline and benzyl alcohol solution. The resulting gels were characterized by rheology, scanning electron microscopy, proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, and powder X-ray diffraction.

15.
Cryst Growth Des ; 22(3): 1914-1921, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35559210

RESUMEN

Bis(urea)s based on the 4,4'-methylenebis(2,6-diethylphenylene) (4,4'-MDEP) spacer are highly effective low molecular weight gelators, and the first single crystal structure of a bis(urea) based on this spacer is reported. The structure is a conformational isomorph with eight crystallographically independent molecules (Z' = 8) arranged in four tennis-ball type dimers with the 2,6-diethylphenylene units adopting five different conformations in the ratio 4:5:3:2:2. The awkward shape and conformational promiscuity arising from the orientations of the ethyl groups in this system is linked to its gelation behavior. A total of seven 4,4'-MDEP derivatives have been prepared, and six are versatile gelators, confirming the particularly effective nature of the MDEP spacer. Only the nitrophenyl derivative does not form gels, likely because of intramolecular CH···O hydrogen bonding arising from the electron-withdrawing nature of the nitro substituent and hence inhibition of the urea α-tape hydrogen-bonded motif.

16.
J Org Chem ; 87(6): 4241-4253, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35230109

RESUMEN

Bicyclic triazolium scaffolds are widely employed in N-heterocyclic carbene (NHC) organocatalysis. While the incorporation of a fused ring was initially for synthetic utility in accessing chiral, modular triazolyl scaffolds, recent results highlight the potential for impact upon reaction outcome with the underpinning origins unclear. The common first step to all triazolium-catalyzed transformations is C(3)-H deprotonation to form the triazolylidene NHC. Herein, we report an analysis of the impact of size of the fused (5-, 6-, and 7-membered, n = 1, 2, and 3, respectively) ring on the C(3) proton transfer reactions of a series of bicyclic triazolium salts. Rate constants for the deuteroxide-catalyzed C(3)-H/D-exchange of triazolium salts, kDO, were significantly influenced by the size of the adjacent fused ring, with the kinetic acidity trend, or protofugalities, following the order kDO (n = 1) > kDO (n = 2) ≈ kDO (n = 3). Detailed analyses of X-ray diffraction (XRD) data for 20 triazolium salts (including 16 new structures) and of computational data for the corresponding triazolylidene NHCs provide insight on structural effects of alteration of fused ring size. In particular, changes in internal triazolyl NCN angle and positioning of the most proximal CH2 with variation in fused ring size are proposed to influence the experimental protofugality order.

17.
Angew Chem Int Ed Engl ; 61(24): e202202193, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35343025

RESUMEN

Herein, we expose how the antagonistic relationship between solid-state luminescence and photocyclization of oligoaryl alkene chromophores is modulated by the conjugation length of their alkenyl backbones. Heptaaryl cycloheptatriene molecular rotors exhibit aggregation-induced emission characteristics. We show that their emission is turned off upon breaking the conjugation of the cycloheptatriene by epoxide formation. While this modification is deleterious to photoluminescence, it enables formation of extended polycyclic frameworks by Mallory reactions. We exploit this dichotomy (i) to manipulate emission properties in a controlled manner and (ii) as a synthetic tool to link together pairs of phenyl rings in a specific sequence. This method to alter the tendency of oligoaryl alkenes to undergo photocyclization can inform the design of solid-state emitters that avoid this quenching mechanism, while also allowing selective cyclization in syntheses of polycyclic aromatic hydrocarbons.

18.
Gels ; 9(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36661796

RESUMEN

Three simple bisamide derivatives (G1, G2 and G3) with different structural modifications were synthesized with easy synthetic procedures in order to test their gel behaviour. The outcomes showed that hydrogen bonding was essential in gel formation; for this reason, only G1 provided satisfactory gels. The presence of methoxy groups in G2 and the alkyl chains in G3 hindered the hydrogen bonding between N-H and C=O that occurred G1. In addition, G1 provided thermally and mechanical stable gels, as confirmed with Tsol and rheology experiments. The gels of G1 were also responsive under pH stimuli and were employed as a vehicle for drug crystallization, causing a change in polymorphism in the presence of flufenamic acid and therefore providing the most thermodynamically stable form III compared with metastable form IV obtained from solution crystallization.

19.
Dalton Trans ; 51(1): 340-351, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34897327

RESUMEN

Transfer hydrogenation (TH) is a powerful synthetic tool in the production of secondary alcohols from ketones by using a non-H2 hydrogen source along with metal catalysts. Among homogeneous catalysts, Ru(II) complexes are the most efficient catalysts. In our research, six novel ruthenium(II) complexes bearing bipyridine-based ligands [Ru(L1)Cl2] (1), [Ru(L1)(PPh3)Cl]Cl (2) and [Ru(L2)Cl2] (3) and N-heterocyclic carbene-supported pyridine (NCN) ligands [RuCp(L3)]PF6 (4), [RuCp*(L3)]PF6 (5), and [Ru(p-cymene)(L3)Cl]PF6 (6) (where L1 = 6,6'-bis(aminomethyl)-2,2'-bipyridine, L2 = 6,6'-bis(dimethylaminomethyl)-2,2'-bipyridine and L3 = 1,3-bis(2-methylpyridyl)imidazolium bromide) were synthesised and characterised by NMR spectroscopy, HRMS, and X-ray crystallography. The catalytic transfer hydrogenation of 28 ketones in 2-propanol at 80 °C in the presence of KOtBu (5 mol%) was demonstrated and the effect of ligands is highlighted. The results show that catalyst 1 exhibits improved TH efficiency compared to the commercially available Milstein catalyst and displays higher catalytic activity than 2 due to the steric effect from PPh3. From a combination of kinetic data and Eyring analysis, a zero-order dependence on the acetophenone substrate is observed, implying a rate-limiting hydride transfer step, leading to the proposed inner-sphere hydride transfer mechanism.

20.
Chem Commun (Camb) ; 58(1): 80-83, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34874383

RESUMEN

The structure of the commercially important polyvinylpyrrolidone-hydrogen peroxide complex can be understood by reference to the co-crystal structure of a hydrogen peroxide complex and its mixed hydrates of a two-monomer unit model compound, bisVP·2H2O2. The mixed hydrates involve selective water substitution into one of the two independent hydrogen peroxide binding sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...