Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0303605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781265

RESUMEN

Black ice, a phenomenon that occurs abruptly owing to freezing rain, is difficult for drivers to identify because it mirrors the color of the road. Effectively managing the occurrence of unforeseen accidents caused by black ice requires predicting their probability using spatial, weather, and traffic factors and formulating appropriate countermeasures. Among these factors, weather and traffic exhibit the highest levels of uncertainty. To address these uncertainties, a study was conducted using a Monte Carlo simulation based on random values to predict the probability of black ice accidents at individual road points and analyze their trigger factors. We numerically modeled black ice accidents and visualized the simulation results in a geographical information system (GIS) by employing a sensitivity analysis, another feature of Monte Carlo simulations, to analyze the factors that trigger black ice accidents. The Monte Carlo simulation allowed us to map black ice accident occurrences at each road point on the GIS. The average black ice accident probability was found to be 0.0058, with a standard deviation of 0.001. Sensitivity analysis using Monte Carlo simulations identified wind speed, air temperature, and angle as significant triggers of black ice accidents, with sensitivities of 0.354, 0.270, and 0.203, respectively. We predicted the probability of black ice accidents per road section and analyzed the primary triggers of black ice accidents. The scientific contribution of this study lies in the development of a method beyond simple road temperature predictions for evaluating the risk of black ice occurrences and subsequent accidents. By employing Monte Carlo simulations, the probability of black ice accidents can be predicted more accurately through decoupling meteorological and traffic factors over time. The results can serve as a reference for government agencies, including road traffic authorities, to identify accident-prone spots and devise strategies focused on the primary triggers of black ice accidents.


Asunto(s)
Sistemas de Información Geográfica , Hielo , Método de Montecarlo , Modelos Estadísticos , Humanos , Accidentes de Tránsito/estadística & datos numéricos
2.
PeerJ Comput Sci ; 10: e1800, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38259899

RESUMEN

Since the first receiver independent exchange format (RINEX) version was released in 1989, it has gone through several versions, making the existing software, such as TEQC, incompatible with certain later versions. This study proposes a new Python package named PyRINEX, which is developed to batch process the most generally used versions of RINEX files, namely 2.0 and 3.0. The proposed package can be used to manage and edit numerous RINEX files as well as perform a data quality check function. PyRINEX can be easily imported into any Python IDE similar to any other open-source Python package, it also makes secondary development easy for users.

3.
Bioconjug Chem ; 34(4): 739-747, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36919927

RESUMEN

High-resolution membrane protein structures are essential for a fundamental understanding of the molecular basis of diverse cellular processes and for drug discovery. Detergents are widely used to extract membrane-spanning proteins from membranes and maintain them in a functional state for downstream characterization. Due to limited long-term stability of membrane proteins encapsulated in conventional detergents, development of novel agents is required to facilitate membrane protein structural study. In the current study, we designed and synthesized tris(hydroxymethyl)aminomethane linker-bearing triazine-based triglucosides (TTGs) for solubilization and stabilization of membrane proteins. When these glucoside detergents were evaluated for four membrane proteins including two G protein-coupled receptors, a few TTGs including TTG-C10 and TTG-C11 displayed markedly enhanced behaviors toward membrane protein stability relative to two maltoside detergents [DDM (n-dodecyl-ß-d-maltoside) and LMNG (lauryl maltose neopentyl glycol)]. This is a notable feature of the TTGs as glucoside detergents tend to be inferior to maltoside detergents at stabilizing membrane proteins. The favorable behavior of the TTGs for membrane protein stability is likely due to the high hydrophobicity of the lipophilic groups, an optimal range of hydrophilic-lipophilic balance, and the absence of cis-trans isomerism.


Asunto(s)
Detergentes , Proteínas de la Membrana , Proteínas de la Membrana/química , Detergentes/química , Trometamina , Triazinas , Glucósidos/química , Solubilidad
4.
Sci Rep ; 12(1): 18429, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319722

RESUMEN

Worldwide, catastrophic landslides are occurring as a result of abnormal climatic conditions. Since a landslide is caused by a combination of the triggers of rainfall and the vulnerability of spatial information, a study that can suggest a method to analyze the complex relationship between the two factors is required. In this study, the relationship between complex factors (rainfall period, accumulated rainfall, and spatial information characteristics) was designed as a system dynamics model as variables to check the possibility of occurrence of vulnerable areas according to the rainfall characteristics that change in real-time. In contrast to the current way of predicting the collapse time by analysing rainfall data, the developed model can set the precipitation period during rainfall. By setting the induced rainfall period, the researcher can then assess the susceptibility of the landslide-vulnerable area. Further, because the geospatial information features and rainfall data for the 672 h before the landslide's occurrence were combined, the results of the susceptibility analysis could be determined for each topographical characteristic according to the rainfall period and cumulative rainfall change. Third, by adjusting the General cumulative rainfall period (DG) and Inter-event time definition (IETD), the preceding rainfall period can be adjusted, and desired results can be obtained. An analysis method that can solve complex relationships can contribute to the prediction of landslide warning times and expected occurrence locations.

5.
Sensors (Basel) ; 18(9)2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177653

RESUMEN

Bathymetric mapping is traditionally implemented using shipborne single-beam, multi-beam, and side-scan sonar sensors. Procuring bathymetric data near coastlines using shipborne sensors is difficult, however, this type of data is important for maritime safety, marine territory management, climate change monitoring, and disaster preparedness. In recent years, the bathymetric light detection and ranging (LiDAR) technique has been tried to get seamless geospatial data from land to submarine topography. This paper evaluated the accuracy of bathymetry generated near coastlines from satellite altimetry-derived gravity anomalies and multi-beam bathymetry using a tuning density contrast of 5000 kg/m³ determined by the gravity-geologic method. Comparing with the predicted bathymetry of using only multi-beam depth data, 78% root mean square error from both multi-beam and airborne bathymetric LiDAR was improved in shallow waters of nearshore coastlines of the western Korea. As a result, the satellite-derived bathymetry estimated from the multi-beam and the airborne bathymetric LiDAR was enhanced to the accuracy of about 0.2 m.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA