Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6005, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752136

RESUMEN

Rich electron-matter interactions fundamentally enable electron probe studies of materials such as scanning transmission electron microscopy (STEM). Inelastic interactions often result in structural modifications of the material, ultimately limiting the quality of electron probe measurements. However, atomistic mechanisms of inelastic-scattering-driven transformations are difficult to characterize. Here, we report direct visualization of radiolysis-driven restructuring of rutile TiO2 under electron beam irradiation. Using annular dark field imaging and electron energy-loss spectroscopy signals, STEM probes revealed the progressive filling of atomically sharp nanometer-wide cracks with striking atomic resolution detail. STEM probes of varying beam energy and precisely controlled electron dose were found to constructively restructure rutile TiO2 according to a quantified radiolytic mechanism. Based on direct experimental observation, a "two-step rolling" model of mobile octahedral building blocks enabling radiolysis-driven atomic migration is introduced. Such controlled electron beam-induced radiolytic restructuring can be used to engineer novel nanostructures atom-by-atom.

4.
Nano Lett ; 23(16): 7576-7583, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37535801

RESUMEN

Using in situ atomic-resolution scanning transmission electron microscopy, atomic movements and rearrangements associated with diffusive solid to solid phase transformations in the Pt-Sn system are captured to reveal details of the underlying atomistic mechanisms that drive these transformations. In the PtSn4 to PtSn2 phase transformation, a periodic superlattice substructure and a unique intermediate structure precede the nucleation and growth of the PtSn2 phase. At the atomic level, all stages of the transformation are templated by the anisotropic crystal structure of the parent PtSn4 phase. In the case of the PtSn2 to Pt2Sn3 transformation, the anisotropy in the structure of product Pt2Sn3 dictates the path of transformation. Analysis of atomic configurations at the transformation front elucidates the diffusion pathways and lattice distortions required for these phase transformations. Comparison of multiple Pt-Sn phase transformations reveals the structural parameters governing solid to solid phase transformations in this technologically interesting intermetallic system.

5.
Nat Commun ; 14(1): 4151, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438330

RESUMEN

Contrary to topological insulators, topological semimetals possess a nontrivial chiral anomaly that leads to negative magnetoresistance and are hosts to both conductive bulk states and topological surface states with intriguing transport properties for spintronics. Here, we fabricate highly-ordered metallic Pt3Sn and Pt3SnxFe1-x thin films via sputtering technology. Systematic angular dependence (both in-plane and out-of-plane) study of magnetoresistance presents surprisingly robust quadratic and linear negative longitudinal magnetoresistance features for Pt3Sn and Pt3SnxFe1-x, respectively. We attribute the anomalous negative longitudinal magnetoresistance to the type-II Dirac semimetal phase (pristine Pt3Sn) and/or the formation of tunable Weyl semimetal phases through symmetry breaking processes, such as magnetic-atom doping, as confirmed by first-principles calculations. Furthermore, Pt3Sn and Pt3SnxFe1-x show the promising performance for facilitating the development of advanced spin-orbit torque devices. These results extend our understanding of chiral anomaly of topological semimetals and can pave the way for exploring novel topological materials for spintronic devices.

6.
ACS Appl Electron Mater ; 4(7): 3623-3631, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35937184

RESUMEN

Perovskite stannate SrSnO3 (SSO) is attracting attention as ultraviolet transparent conducting oxides (UV TCOs) due to its ultrawide band gap and high conductivity. Here, we investigate in detail the thickness-dependent electrical, structural, and optical properties of sequentially strain-relaxed La-doped SrSnO3 (SLSO) epitaxial thin films. We find that the SLSO films grow as an orthorhombic Pnma phase with a - a - c + in the c + direction under the tensile strain. With the strain relaxation, as the films become thicker, vertical grain boundaries are created and the orthorhombic phase becomes reoriented to all three possible orientations. Simultaneously, the conductance starts to deviate from the linear behavior with increasing film thickness. Through the analysis of thickness fringes in optical transmittance, we found that a 120 nm thick nominally 4% La-doped SrSnO3 film has a figure of merit (φTC = 2.65 × 10-3 Ω-1) at λ = 300 nm in the deep-UV region, which is the highest value among the well-known candidates for UV TCOs reported to date.

7.
Phys Rev Lett ; 129(1): 017203, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841567

RESUMEN

Injecting spin currents into antiferromagnets and realizing efficient spin-orbit-torque switching represents a challenging topic. Because of the diminishing magnetic susceptibility, current-induced antiferromagnetic dynamics remain poorly characterized, complicated by spurious effects. Here, by growing a thin film antiferromagnet, α-Fe_{2}O_{3}, along its nonbasal plane orientation, we realize a configuration where the spin-orbit torque from an injected spin current can unambiguously rotate and switch the Néel vector within the tilted easy plane, with an efficiency comparable to that of classical ferrimagnetic insulators. Our study introduces a new platform for quantitatively characterizing switching and oscillation dynamics in antiferromagnets.

8.
Nano Lett ; 21(10): 4357-4364, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33973791

RESUMEN

Distinct dopant behaviors inside and outside dislocation cores are identified by atomic-resolution electron microscopy in perovskite BaSnO3 with considerable consequences on local atomic and electronic structures. Driven by elastic strain, when A-site designated La dopants segregate near a dislocation core, the dopant atoms accumulate at the Ba sites in compressively strained regions. This triggers formation of Ba vacancies adjacent to the core atomic sites resulting in reconstruction of the core. Notwithstanding the presence of extremely large tensile strain fields, when La atoms segregate inside the dislocation core, they become B-site dopants, replacing Sn atoms and compensating the positive charge of the core oxygen vacancies. Electron energy-loss spectroscopy shows that the local electronic structure of these dislocations changes dramatically due to segregation of the dopants inside and around the core ranging from formation of strong La-O hybridized electronic states near the conduction band minimum to insulator-to-metal transition.

9.
Sci Adv ; 7(3)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33523903

RESUMEN

A line defect with metallic characteristics has been found in optically transparent BaSnO3 perovskite thin films. The distinct atomic structure of the defect core, composed of Sn and O atoms, was visualized by atomic-resolution scanning transmission electron microscopy (STEM). When doped with La, dopants that replace Ba atoms preferentially segregate to specific crystallographic sites adjacent to the line defect. The electronic structure of the line defect probed in STEM with electron energy-loss spectroscopy was supported by ab initio theory, which indicates the presence of Fermi level-crossing electronic bands that originate from defect core atoms. These metallic line defects also act as electron sinks attracting additional negative charges in these wide-bandgap BaSnO3 films.

10.
Nano Lett ; 21(3): 1246-1252, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33263403

RESUMEN

We describe a novel approach for the rational design and synthesis of self-assembled periodic nanostructures using martensitic phase transformations. We demonstrate this approach in a thin film of perovskite SrSnO3 with reconfigurable periodic nanostructures consisting of regularly spaced regions of sharply contrasted dielectric properties. The films can be designed to have different periodicities and relative phase fractions via chemical doping or strain engineering. The dielectric contrast within a single film can be tuned using temperature and laser wavelength, effectively creating a variable photonic crystal. Our results show the realistic possibility of designing large-area self-assembled periodic structures using martensitic phase transformations with the potential of implementing "built-to-order" nanostructures for tailored optoelectronic functionalities.

11.
Nanotechnology ; 31(40): 405203, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32544901

RESUMEN

Black arsenic (BAs) is an elemental van der Waals semiconductor that is promising for a wide range of electronic and photonic applications. The narrow bandgap and symmetric band structure suggest that ambipolar (both n- and p-type) transport should be observable, however, only p-type transport has been experimentally studied to date. Here, we demonstrate and characterize ambipolar transport in exfoliated BAs field effect transistors. In the thickest flakes (∼ 80 nm), maximum currents, I max, up to 60 µA µm-1 and 90 µA µm-1are achieved for hole and electron conduction, respectively. Room-temperature hole (electron) mobilities up to 150 cm2 V-1 s-1 (175 cm2 V-1 s-1) were obtained, with temperature-dependence consistent with a phonon-scattering mechanism. The Schottky barrier height for Ni contacts to BAs was also extracted from the temperature-dependent measurements. I max for both n- and p-type conductivity was found to decrease with reduced thickness, while the ratio of I max to the minimum current, I min, increased. In the thinnest flakes (∼ 1.5 nm), only p-type conductivity was observed with the lowest value of I min = 400 fA µm-1. I max/I min ratios as high as 5 × 105 (5 × 102) were obtained, for p- (n-channel) devices. Finally, the ambipolarity was used to demonstrate a complementary logic inverter and a frequency doubling circuit.

12.
ACS Nano ; 14(5): 5988-5997, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32310631

RESUMEN

Black arsenic (BAs) is a van der Waals layered material with a puckered honeycomb structure and has received increased interest due to its anisotropic properties and promising performance in devices. Here, crystalline structure, thickness-dependent dielectric responses, and ambient stability of BAs nanosheets are investigated using scanning transmission electron microscopy (STEM) imaging and spectroscopy. Atomic-resolution high-angle annular dark-field (HAADF)-STEM images directly visualize the three-dimensional structure and evaluate the degree of anisotropy. STEM-electron energy loss spectroscopy is used to measure the dielectric response of BAs as a function of the number of layers. Finally, BAs degradation under different ambient environments is studied, highlighting high sensitivity to moisture in the air.

13.
Ultramicroscopy ; 210: 112919, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31911393

RESUMEN

We present a multi-region extension of power law background subtraction for core-level EEL spectra to improve the robustness of background removal. This method takes advantage of the post-edge shape of core-loss EEL edges to enable simultaneous fitting of pre- and post-edge background regions. This method also produces simultaneous and consistent background removal from multiple edges in a single EEL spectrum. The stability of this method with respect to the fitting energy window and the EELS signal to noise ratio is also discussed.

14.
Ultramicroscopy ; 208: 112863, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31683082

RESUMEN

A study of the STEM probe channeling in a heterostructured crystalline bilayer specimens is presented here with a goal to guide STEM-based characterization of multilayer structures. STEM analysis of perovskite BaSnO3/LaAlO3 bilayers is performed and the dominating effects of beam channeling on HAADF- and LAADF-STEM are illustrated. To study the electron beam channeling through BaSnO3/LaAlO3 bilayers, probe intensity depth profiles are calculated, and the effects of probe defocus and atomic column alignment are discussed. Characteristics of the beam channeling are correlated to resulting ADF-STEM images, which is then tested by comparing focal series of plan-view HAADF-STEM images to those recorded experimentally. Additionally, discussions on how to visualize the misfit dislocation network at the BaSnO3/LaAlO3 interface using HAADF- and LAADF-STEM images are provided.

15.
Nano Lett ; 19(12): 8920-8927, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31702928

RESUMEN

Separating electrons from their source atoms in La-doped BaSnO3, the first perovskite oxide semiconductor to be discovered with high room-temperature electron mobility, remains a subject of great interest for achieving high-mobility electron gas in two dimensions. So far, the vast majority of work in perovskite oxides has focused on heterostructures involving SrTiO3 as an active layer. Here we report the demonstration of modulation doping in BaSnO3 as the high room-temperature mobility host without the use of SrTiO3. Significantly, we show the use of angle-resolved hard X-ray photoelectron spectroscopy (HAXPES) as a nondestructive approach to not only determine the location of electrons at the buried interface but also to quantify the width of electron distribution in BaSnO3. The transport results are in good agreement with the results of self-consistent solution to one-dimensional Poisson and Schrödinger equations. Finally, we discuss viable routes to engineer two-dimensional electron gas density through band-offset engineering.

16.
Sci Rep ; 8(1): 10245, 2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980713

RESUMEN

Detailed microstructure analysis of epitaxial thin films is a vital step towards understanding essential structure-property relationships. Here, a combination of transmission electron microscopy (TEM) techniques is utilized to determine in detail the microstructure of epitaxial La-doped BaSnO3 films grown on two different perovskite substrates: LaAlO3 and PrScO3. These BaSnO3 films are of high current interest due to outstanding electron mobility at ambient. The rotational disorder of low-angle grain boundaries, namely the in-plane twist and out-of-plane tilt, is visualized by conventional TEM under a two-beam condition, and the degree of twists in grains of such films is quantified by selected-area electron diffraction. The investigation of the atomic arrangement near the film-substrate interfaces, using high-resolution annular dark-field scanning TEM imaging, reveals that edge dislocations with a Burgers vector along [001] result in the out-of-plane tilt. It is shown that such TEM-based analyses provide detailed information about the microstructure of the films, which, when combined with complimentary high-resolution X-ray diffraction, yields a complete structural characterization of the films. In particular, stark differences in out-of-plane tilt on the two substrates are shown to result from differences in misfit dislocation densities at the interface, explaining a puzzling observation from X-ray diffraction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA