Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
Sci Rep ; 14(1): 13831, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879647

RESUMEN

Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells (ECs) that play an important role in liver development and regeneration. Additionally, it is involved in various pathological processes, including steatosis, inflammation, fibrosis and hepatocellular carcinoma. However, the rapid dedifferentiation of LSECs after culture greatly limits their use in vitro modeling for biomedical applications. In this study, we developed a highly efficient protocol to induce LSEC-like cells from human induced pluripotent stem cells (hiPSCs) in only 8 days. Using single-cell transcriptomic analysis, we identified several novel LSEC-specific markers, such as EPAS1, LIFR, and NID1, as well as several previously revealed markers, such as CLEC4M, CLEC1B, CRHBP and FCN3. These LSEC markers are specifically expressed in our LSEC-like cells. Furthermore, hiPSC-derived cells expressed LSEC-specific proteins and exhibited LSEC-related functions, such as the uptake of acetylated low density lipoprotein (ac-LDL) and immune complex endocytosis. Overall, this study confirmed that our novel protocol allowed hiPSCs to rapidly acquire an LSEC-like phenotype and function in vitro. The ability to generate LSECs efficiently and rapidly may help to more precisely mimic liver development and disease progression in a liver-specific multicellular microenvironment, offering new insights into the development of novel therapeutic strategies.


Asunto(s)
Diferenciación Celular , Células Endoteliales , Células Madre Pluripotentes Inducidas , Hígado , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología , Hígado/metabolismo , Hígado/citología , Análisis de la Célula Individual/métodos , Células Cultivadas , Biomarcadores/metabolismo , Lipoproteínas LDL/metabolismo , Perfilación de la Expresión Génica
2.
J Obstet Gynaecol ; 44(1): 2347430, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38835234

RESUMEN

BACKGROUND: At present, the discovery of new biomarkers is of great significance for the early diagnosis, treatment and prognosis assessment of ovarian cancer. Previous findings indicated that aberrant G-protein-coupled receptor 176 (GPR176) expression might contribute to tumorigenesis and subsequent progression. However, the expression of GPR176 and the molecular mechanisms in ovarian cancer had not been investigated. METHODS: GPR176 expression was compared with clinicopathological features of ovarian cancer using immunohistochemical and bioinformatics analyses. GPR176-related genes and pathways were analysed using bioinformatics analysis. Additionally, the effects of GPR176 on ovarian cancer cell phenotypes were investigated. RESULTS: GPR176 expression positively correlated with elder age, clinicopathological staging, tumour residual status, and unfavourable survival of ovarian cancer, but negatively with purity loss, infiltration of B cells, and CD8+ T cells. Gene Set Enrichment Analysis showed that differential expression of GPR176 was involved in focal adhesion, ECM-receptor interaction, cell adhesion molecules and so on. STRING and Cytoscape were used to determine the top 10 nodes. Kyoto Encyclopaedia of Genes and Genomes analysis indicated that GPR176-related genes were involved in the ECM structural constituent and organisation and so on. GPR176 overexpression promoted the proliferation, anti-apoptosis, anti-pyroptosis, migration and invasion of ovarian cancer cells with overexpression of N-cadherin, Zeb1, Snail, Twist1, and under-expression of gasdermin D, caspase 1, and E-cadherin. CONCLUSION: GPR176 might be involved in the progression of ovarian cancer. It might be used as a biomarker to indicate the aggressive behaviour and poor prognosis of ovarian cancer and a target of genetic therapy.


Ovarian cancer is a gynecological cancer with high mortality. Due to the limited screening tests and treatments available, most ovarian cancer patients are diagnosed at a late stage and the prognosis is poor. The addition of new cancer diagnostic biomarkers and new intervention targets may improve quality of life and survival for patients with ovarian cancer. Previous studies have revealed the aberrant GPR176 expression might contribute to tumorigenesis and subsequent progression in many other tumours. In our study, GPR176 was found to promote the proliferation, anti-apoptosis, anti-pyroptosis, migration and invasion, EMT, and weakening the cellular adhesion of ovarian cancer cells, and involved in the Bcl-2/Bax or the PI3K/Akt/mTOR pathway. Therefore, abnormal expression of GPR176 might be served as a biomarker for aggressive behaviour and poor prognosis of ovarian cancer and a target for gene therapy.


Asunto(s)
Neoplasias Ováricas , Receptores Acoplados a Proteínas G , Humanos , Femenino , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Persona de Mediana Edad , Terapia Genética/métodos , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biología Computacional , Pronóstico , Proliferación Celular/genética , Carcinogénesis/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
3.
Anal Methods ; 16(21): 3430-3437, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38766841

RESUMEN

Two levels of nucleic acids-based isothermal amplification normally require a long reaction time due to the low concentration of catalyst, which limits its practical application. A sensitive fluorescence assay of chloramphenicol (CAP) was developed coupled with two-level isothermal amplification using a self-powered catalyzed hairpin assembly (CHA) and entropy-driven circuit (EDC). CAP can bind with its aptamer to open its closed structure. The opened hairpin can initiate self-powered CHA and EDC. The product of CHA can circularly catalyze the CHA with increasing concentration. In principle, the product of CHA plays the role of catalyst and increases with the progression of the reaction. Compared with the normal two levels of amplification, the amplification efficiency of our strategy is much higher due to the self-powered reaction by the CHA product. Thus, the reaction time is shortened to 110 min in this strategy. Moreover, the detection limit for CAP can achieve 0.1 pM and shows promising prospects for practical application.


Asunto(s)
Cloranfenicol , Entropía , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico , Cloranfenicol/análisis , Cloranfenicol/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Catálisis , Espectrometría de Fluorescencia/métodos , Fluorescencia , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Técnicas de Diagnóstico Molecular
4.
Commun Biol ; 7(1): 594, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760406

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a chronic disease caused by hepatic steatosis. Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine RNA editing. However, the functional role of ADAR2 in NAFLD is unclear. ADAR2+/+/GluR-BR/R mice (wild type, WT) and ADAR2-/-/GluR-BR/R mice (ADAR2 KO) mice are fed with standard chow or high-fat diet (HFD) for 12 weeks. ADAR2 KO mice exhibit protection against HFD-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, ADAR2 KO mice display reduced liver lipid droplets in concert with decreased hepatic TG content, improved hepatic insulin signaling, better pyruvate tolerance, and increased glycogen synthesis. Mechanistically, ADAR2 KO effectively mitigates excessive lipid production via AMPK/Sirt1 pathway. ADAR2 KO inhibits hepatic gluconeogenesis via the AMPK/CREB pathway and promotes glycogen synthesis by activating the AMPK/GSK3ß pathway. These results provide evidence that ADAR2 KO protects against NAFLD progression through the activation of AMPK signaling pathways.


Asunto(s)
Adenosina Desaminasa , Dieta Alta en Grasa , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico , Proteínas de Unión al ARN , Transducción de Señal , Animales , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/deficiencia , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/etiología , Dieta Alta en Grasa/efectos adversos , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Resistencia a la Insulina , Ratones Obesos , Obesidad/metabolismo , Obesidad/genética , Ratones Endogámicos C57BL , Hígado/metabolismo
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 458-465, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660852

RESUMEN

OBJECTIVE: To explore the correlation between peripheral blood B cell count and clinical features and prognosis of patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL). METHODS: The relationship of peripheral blood B cell count with clinical features, laboratory indexes and prognosis in 67 patients with newly diagnosed DLBCL was retrospectively analyzed. RESULTS: Patients were divided into low B-cell count group (B cell<0.1×109/L, n=34) and high B-cell count group (B cell≥0.1×109/L, n=33) according to the median B cell count values. Compared with the high B cell count group, the low B cell count group had a higher proportion of patients with Lugano stage III-IV, elevated LDH, elevated ß2-MG and IPI score 3-5 and increased CRP (P =0.033, 0.000, 0.023, 0.001, 0.033). The peripheral CD3+ and CD4+ cell counts of patients in the low B cell count group were significantly lower than those in the high B cell count group (P =0.010, 0.017). After initial treatment, overall response rate (ORR) and complete remission (CR) rate in high B cell count group were significantly higher than those in low B cell count group (P =0.032, 0.013). The median follow-up time of patients was 23(2-77) months, progression-free survival (PFS) and overall survival (OS) of patients in the high B cell count group were significantly better than those in the low B cell count group (P =0.001, 0.002). Univariate analysis showed that pretreatment low B cell count in the peripheral blood was associated with shortened PFS and OS (HR=4.108, P =0.002; HR=8.218, P =0.006). Multivariate analysis showed that low B cell count was an independent prognostic factor for shortened PFS (HR=3.116, P =0.037). CONCLUSION: Decreased peripheral blood B cell count in newly diagnosed DLBCL patients is associated with high-risk clinical features and may affect the efficacy of immunochemotherapy, which is associated with poor clinical prognosis.


Asunto(s)
Linfocitos B , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/sangre , Linfoma de Células B Grandes Difuso/diagnóstico , Pronóstico , Estudios Retrospectivos , Recuento de Linfocitos , Masculino , Femenino , Persona de Mediana Edad
6.
Commun Chem ; 7(1): 91, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643239

RESUMEN

Isofagomine (IFG) and its analogues possess promising glycosidase inhibitory activities. However, a flexible synthetic strategy toward both C5a-functionalized IFGs remains to be explored. Here we show a practical synthesis of C5a-S and R aminomethyl IFG-based derivatives via the diastereoselective addition of cyanide to cyclic nitrone 1. Nitrone 1 was conveniently prepared on a gram scale and in high yield from inexpensive (-)-diethyl D-tartrate via a straightforward method, with a stereoselective Michael addition of a nitroolefin and a Nef reaction as key steps. A 268-membered library (134 × 2) of the C5a-functionalized derivatives was submitted to enzyme- or cell-based bio-evaluations, which resulted in the identification of a promising ß-glucocerebrosidase (GCase) stabilizer demonstrating a 2.7-fold enhancement at 25 nM in p.Asn370Ser GCase activity and a 13-fold increase at 1 µM in recombinant human GCase activity in Gaucher cell lines.

7.
J Cachexia Sarcopenia Muscle ; 15(3): 949-962, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38533529

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Sarcopenia is a syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength, which is commonly associated with NAFLD. Adenosine-to-inosine editing, catalysed by adenosine deaminase acting on RNA (ADAR), is an important post-transcriptional modification of genome-encoded RNA transcripts. Three ADAR gene family members, including ADAR1, ADAR2 and ADAR3, have been identified. However, the functional role of ADAR2 in obesity-associated NAFLD and sarcopenia remains unclear. METHODS: ADAR2+/+/GluR-BR/R mice (wild type [WT]) and ADAR2-/-/GluR-BR/R mice (ADAR2 knockout [KO]) were subjected to feeding with standard chow or high-fat diet (HFD) for 20 weeks at the age of 5 weeks. The metabolic parameters, hepatic lipid droplet, grip strength test, rotarod test, muscle weight, fibre cross-sectional area (CSA), fibre types and protein associated with protein degradation were examined. Systemic and local tissues serum amyloid A1 (SAA1) were measured. The effects of SAA1 on C2C12 myotube atrophy were investigated. RESULTS: ADAR2 KO mice fed with HFD exhibited lower body weight (-7.7%, P < 0.05), lower liver tissue weight (-20%, P < 0.05), reduced liver lipid droplets in concert with a decrease in hepatic triglyceride content (-24%, P < 0.001) and liver injury (P < 0.01). ADAR2 KO mice displayed protection against HFD-induced glucose intolerance, insulin resistance and dyslipidaemia. Skeletal muscle mass (P < 0.01), muscle strength (P < 0.05), muscle endurance (P < 0.001) and fibre size (CSA; P < 0.0001) were improved in ADAR2 KO mice fed with HFD compared with WT mice fed with HFD. Muscle atrophy-associated transcripts, such as forkhead box protein O1, muscle atrophy F-box/atrogin-1 and muscle RING finger 1/tripartite motif-containing 63, were decreased in ADAR2 KO mice fed with HFD compared with WT mice fed with HFD. ADAR2 deficiency attenuates HFD-induced local liver and skeletal muscle tissue inflammation. ADAR2 deficiency abolished HFD-induced systemic (P < 0.01), hepatic (P < 0.0001) and muscular (P < 0.001) SAA1 levels. C2C12 myotubes treated with recombinant SAA1 displayed a decrease in myotube length (-37%, P < 0.001), diameter (-20%, P < 0.01), number (-39%, P < 0.001) and fusion index (-46%, P < 0.01). Myogenic markers (myosin heavy chain and myogenin) were decreased in SAA1-treated myoblast C2C12 cells. CONCLUSIONS: These results provide novel evidence that ADAR2 deficiency may be important in obesity-associated sarcopenia and NAFLD. Increased SAA1 might be involved as a regulatory factor in developing sarcopenia in NAFLD.


Asunto(s)
Adenosina Desaminasa , Ratones Noqueados , Atrofia Muscular , Enfermedad del Hígado Graso no Alcohólico , Proteínas de Unión al ARN , Proteína Amiloide A Sérica , Animales , Adenosina Desaminasa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Atrofia Muscular/metabolismo , Proteína Amiloide A Sérica/metabolismo , Modelos Animales de Enfermedad , Masculino , Dieta Alta en Grasa , Músculo Esquelético/patología , Músculo Esquelético/metabolismo
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124110, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452462

RESUMEN

A catalytic hairpin self-assembly (CHA) amplification method was developed for CAP detection based on cross-shaped DNA and UiO-66. MOF was used to quench the fluorescent signal of FAM labeled DNA. Cross-shaped DNA with four fluorophore group (FAM) was utilized to enhance the fluorescent intensity. CAP could open hairpin structure of H-apt and induce CHA reaction. The product of CHA hybridized with cross-shaped DNA, resulting its leaving from the surface of UiO-66 and recovery of fluorescent signal. The limit of detection (LOD) was low to 0.87 pM. This method had been successfully applied for the detection of CAP in actual samples. Importantly, the high sensitivity was attributed to the great amplification efficiency of CHA, strong fluorescent intensity of cross-shaped DNA structure and great fluorescent quenched efficiency of UiO-66.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Estructuras Metalorgánicas , Ácidos Ftálicos , Cloranfenicol , ADN/química , Espectrometría de Fluorescencia/métodos , Límite de Detección , Técnicas Biosensibles/métodos , ADN Catalítico/química
9.
Adv Sci (Weinh) ; 11(14): e2308496, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308190

RESUMEN

During maternal-to-zygotic transition (MZT) in the embryo, mRNA undergoes complex post-transcriptional regulatory processes. However, it is unclear whether and how alternative splicing plays a functional role in MZT. By analyzing transcriptome changes in mouse and human early embryos, dynamic changes in alternative splicing during MZT are observed and a previously unnoticed process of zygotic splicing activation (ZSA) following embryonic transcriptional activation is described. As the underlying mechanism of RNA splicing, splicing factors undergo dramatic maternal-to-zygotic conversion. This conversion relies on the key maternal factors BTG4 and PABPN1L and is zygotic-transcription-dependent. CDK11-dependent phosphorylation of the key splicing factor, SF3B1, and its aggregation with SRSF2 in the subnuclear domains of 2-cell embryos are prerequisites for ZSA. Isoforms generated by erroneous splicing, such as full-length Dppa4, hinder normal embryonic development. Moreover, alternative splicing regulates the conversion of early embryonic blastomeres from totipotency to pluripotency, thereby affecting embryonic lineage differentiation. ZSA is an essential post-transcriptional process of MZT and has physiological significance in generating new life. In addition to transcriptional activation, appropriate expression of transcript isoforms is also necessary for preimplantation embryonic development.


Asunto(s)
Transcriptoma , Cigoto , Humanos , Animales , Ratones , Transcriptoma/genética , Cigoto/metabolismo , Desarrollo Embrionario/genética , Empalme del ARN , Isoformas de Proteínas/genética , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Proteínas Nucleares/genética
10.
Cancer Biol Ther ; 25(1): 2302162, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38241178

RESUMEN

Keratin 80 (KRT80) is a filament protein that makes up one of the major structural fibers of epithelial cells, and involved in cell differentiation and epithelial barrier integrity. Here, KRT80 mRNA expression was found to be higher in esophageal cancer than normal epithelium by RT-PCR and bioinformatics analysis (p < .05), opposite to KRT80 methylation (p < .05). There was a negative relationship between promoter methylation and expression level of KRT80 gene in esophageal cancer (p < .05). KRT80 mRNA expression was positively correlated with the differentiation, infiltration of immune cells, and poor prognosis of esophageal cancer (p < .05). KRT80 mRNA expression was positively linked to no infiltration of immune cells, the short survival time of esophageal cancers (p < .05). The differential genes of KRT80 mRNA were involved in fat digestion and metabolism, peptidase inhibitor, and intermediate filament, desosome, keratinocyte differentiation, epidermis development, keratinization, ECM regulator, complement cascade, metabolism of vitamins and co-factor (p < .05). KRT-80-related genes were classified into endocytosis, cell adhesion molecule binding, cadherin binding, cell-cell junction, cell leading edge, epidermal cell differentiation and development, T cell differentiation and receptor complex, plasma membrane receptor complex, external side of plasma membrane, metabolism of amino acids and catabolism of small molecules, and so forth (p < .05). KRT80 knockdown suppressed anti-apoptosis, anti-pyroptosis, migration, invasion, chemoresistance, and lipogenesis in esophageal cancer cells (p < .05), while ACC1 and ACLY overexpression reversed the inhibitory effects of KRT80 on lipogenesis and chemoresistance. These findings indicated that up-regulated expression of KRT80 might be involved in esophageal carcinogenesis and subsequent progression, aggravate aggressive phenotypes, and induced chemoresistance by lipid droplet assembly and ACC1- and ACLY-mediated lipogenesis.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Esofágicas , Queratinas Tipo II , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Resistencia a Antineoplásicos/genética , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , Lipogénesis/genética , ARN Mensajero , Queratinas Tipo II/genética , Queratinas Tipo II/metabolismo
11.
Dermatitis ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227792

RESUMEN

Background: A higher fracture risk has been reported previously in patients with atopic dermatitis (AD). The bone mineral density (BMD) was not accounted for in these studies. Objective: To investigate the fracture risk in AD patients after adjustment for factors including BMD. Methods: We retrospectively analyzed AD patients (≥45 years) who underwent BMD examination at our hospital from July 2010 to February 2023. Individuals who received BMD examinations during a health checkup were identified as the controls. We documented their clinical characteristics, BMD, 10-year risk for a major fracture based on FRAX (Fracture Risk Assessment Tool), and development of osteoporotic fractures. Patients were followed until development of new onset fracture or the end of the study period. A cross-sectional comparison of BMD between AD patients and controls at baseline was performed using the Mann-Whitney U test after propensity score matching (PSM). Their fracture risks were compared using the multivariate Cox regression model. BMD and fracture risk were also compared between AD patients who received systemic therapy and those who did not. Results: A total of 50 AD patients and 386 controls were enrolled. The median age was older in AD patients when compared with controls (70 years vs 60 years). Their BMD at all sites was similar after PSM. After a median follow-up of 1.7-2.0 years, 13 osteoporotic fractures were identified. In the multivariate Cox regression analysis, AD was not associated with new onset fractures of all sites (adjusted hazard ratio [aHR] 2.55, 95% confidence interval [CI] 0.72-9.01) but was significantly associated with new onset vertebral fractures (aHR 6.80, 95% CI 1.77-26.17). The BMD and incidence of fractures were similar between AD who received systemic therapy and those who did not. Conclusions: Elderly AD patients had similar BMD but a higher short-term risk for vertebral fractures when compared with the controls.

12.
Front Biosci (Landmark Ed) ; 29(1): 34, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38287837

RESUMEN

Establishing reliable and reproducible animal models for disease modelling, drug screening and the understanding of disease susceptibility and pathogenesis is critical. However, traditional animal models differ significantly from humans in terms of physiology, immune response, and pathogenesis. As a result, it is difficult to translate laboratory findings into biomedical applications. Although several animal models with human chimeric genes, organs or systems have been developed in the past, their limited engraftment rate and physiological functions are a major obstacle to realize convincing models of humans. The lack of human transplantation resources and insufficient immune tolerance of recipient animals are the main challenges that need to be overcome to generate fully humanized animals. Recent advances in gene editing and pluripotent stem cell-based xenotransplantation technologies offer opportunities to create more accessible human-like models for biomedical research. In this article, we have combined our laboratory expertise to summarize humanized animal models, with a focus on hematopoietic/immune system and liver. We discuss their generation strategies and the potential donor cell sources, with particular attention given to human pluripotent stem cells. In particular, we discuss the advantages, limitations and emerging trends in their clinical and pharmaceutical applications. By providing insights into the current state of humanized animal models and their potential for biomedical applications, this article aims to advance the development of more accurate and reliable animal models for disease modeling and drug screening.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Humanos , Modelos Animales , Trasplante Heterólogo , Modelos Animales de Enfermedad
13.
Nature ; 625(7995): 516-522, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233617

RESUMEN

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices1,2. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode3-5. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber6-8. Thus far, evaporable organic molecules9,10 and atomic-layer-deposited metal oxides11,12 have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.

14.
Clin Rheumatol ; 43(1): 117-128, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658935

RESUMEN

OBJECTIVE: Rheumatoid arthritis (RA) is characterized by localized bone loss, general osteoporosis and increased fracture risks. Tumour necrosis factor inhibitors (TNFi), non-tumour necrosis factor inhibitors (non-TNFi) biologic, Janus kinase inhibitors (JAKi) had shown the suppression effects to osteoclast activation and improvement of bone mineral density (BMD). Anti-cyclic citrullinated peptide antibody (ACPA) is associated with osteoclast activation and the resultant bone loss. However, few studies have compared BMD changes among patients with RA treated with targeted therapies that have different mechanisms of action. METHODS: This retrospective study recruited patients with RA who had undergone BMD testing twice. Changes in the BMD were compared using the generalized estimating equation (GEE) in treatment groups that received conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs), TNFi, non-TNFi biologics, and JAKi. RESULTS: In total, 362 patients with RA were enrolled (csDMARDs, n = 153, TNFi, n = 71, non-TNFi biologics, n = 108, JAKi, n = 30). We observed greater changes in femoral BMD (left, 0.06, 95% CI 0.01-0.12, p = 0.016; right, 0.09, 95% CI 0.04-0.15, p = 0.001 by GEE) following JAKi treatment as compared with other treatments. Compared to the ACPA-negative group, patients with ACPA positivity exhibited greater improvement in the femoral BMD (left, 0.09, 95% CI 0.02-0.15, p = 0.008; right, 0.11, 95% CI 0.05-0.18, p = 0.001). CONCLUSION: Compared to other targeted therapies, JAKi might exert a more potent effect to prevent BMD loss, specifically in ACPA-positive patients with RA, and could be a potential therapeutic option to mitigate generalized bone loss. Key Points •JAKi therapy inhibits systemic bone loss in patients with RA. •ACPA-positive RA patients exhibited a greater BMD improvement than ACPA-negative RA patients. •JAKi might more potently prevent BMD decline than conventional synthetic or biological DMARDs.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Productos Biológicos , Inhibidores de las Cinasas Janus , Humanos , Densidad Ósea , Inhibidores de las Cinasas Janus/uso terapéutico , Estudios Retrospectivos , Antirreumáticos/efectos adversos , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Productos Biológicos/uso terapéutico
15.
Braz J Microbiol ; 55(1): 777-788, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38147271

RESUMEN

Organic agriculture is a farming method that provides healthy food and is friendly to the environment, and it is developing rapidly worldwide. This study compared microbial communities in organic farming (Or) paddy fields to those in nonorganic farming (Nr) paddy fields based on 16S rDNA sequencing and analysis. The predominant microorganisms in both soils were Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, and Nitrospirota. The alpha diversity of the paddy soil microbial communities was not different between the nonorganic and organic farming systems. The beta diversity of nonmetric multidimensional scaling (NMDS) revealed that the two groups were significantly separated. Distance-based redundancy analysis (db-RDA) suggested that soil pH and electrical conductivity (EC) had a positive relationship with the microbes in organic paddy soils. There were 23 amplicon sequence variants (ASVs) that showed differential abundance. Among them, g_B1-7BS (Proteobacteria), s_Sulfuricaulis limicola (Proteobacteria), g_GAL15 (p_GAL15), c_Thermodesulfovibrionia (Nitrospirota), two of f_Anaerolineaceae (Chloroflexi), and two of g_S085 (Chloroflexi) showed that they were more abundant in organic soils, whereas g_11-24 (Acidobacteriota), g__Subgroup_7 (Acidobacteriota), and g_Bacillus (Firmicutes) showed differential abundance in nonorganic paddy soils. Functional prediction of microbial communities in paddy soils showed that functions related to carbohydrate metabolism could be the major metabolic activities. Our work indicates that organic farming differs from nonorganic farming in terms of microbial composition in paddy soils and provides specific microbes that might be helpful for understanding soil fertility.


Asunto(s)
Actinobacteria , Microbiota , Oryza , Suelo/química , Microbiología del Suelo , ARN Ribosómico 16S/genética , Agricultura/métodos , Bacterias/genética , Actinobacteria/genética , Oryza/genética
17.
Curr Neurovasc Res ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38099528

RESUMEN

BACKGROUND: The common and internal carotid arteries are the upstream vessels of the small cerebral vessels. The relationship between hemodynamic changes in the significant cervical vessels and cerebral small vessel disease (CSVD) remains uncertain. This research sought to analyze the correlation between carotid blood flow velocity and the total magnetic resonance imaging (MRI) burden of CSVD in patients with recent small subcortical infarcts (RSSIs). METHODS: Data were gathered from individuals diagnosed with RSSIs admitted to Changzhou Second People's Hospital between January 2022 and June 2023. Brain MRI was performed on every patient to determine the overall MRI burden of CSVD, along with carotid duplex ultrasound to evaluate carotid blood flow velocity and pulsatility index (PI) of the common carotid (CCA) and internal carotid (ICA) arteries. The association between carotid blood flow velocity and the total MRI load of CSVD was examined using univariate and multivariate analyses. RESULTS: For our investigation, 272 individuals with RSSIs were screened. 82 individuals had a moderate to severe load of CSVD, while 190 participants showed a mild burden. Patients with moderate to severe burden of CSVD had lower end-diastolic velocity (EDV) and higher PI in CCA and ICA than those with mild load (P < 0.001). After adjusting for variables like age, hypertension, systolic blood pressure, and blood homocysteine levels, multivariate logistic regression analysis showed that EDV in CCA (OR, 0.894; P = 0.011), PI in CCA (OR, 5.869; P = 0.017), EDV in ICA (OR, 0.909; P = 0.008), and PI in ICA (OR, 5.324; P = 0.041) were independently related to moderate to severe CSVD burden. Spearman correlation analysis showed that EDV in CCA and ICA was negatively related to the total MRI load of CSVD in patients with RSSIs (P < 0.001). PI in CCA and ICA was positively associated with the whole MRI load of CSVD (P < 0.001). CONCLUSION: Low carotid blood flow velocity and high carotid pulsatility index are independently associated with moderate to severe burden of CSVD.

18.
ACS Appl Mater Interfaces ; 15(48): 56203-56212, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38009758

RESUMEN

Hemimyzon formosanus, a species of ray-finned fish, makes use of crescent-shaped abdominal suckers for adhering to irregular, rough, and slippery gravel in fast-flowing headwaters and minor tributaries. Bioinspired by the adhesion characteristics, two-dimensional non-close-packed colloidal crystals are self-assembled and serve as templates to pattern crescent-shaped shape memory polymer-based nanostructure arrays. By the manipulation of the configuration of nanosuckers through applying common solvent stimulations, the corresponding adhesion performances on glass, sandpaper, or even porcine kidney surfaces can be switched instantaneously and reversibly under ambient conditions. The biomimetic nanostructures indicate possible solutions to a variety of challenges, such as wound nursing, and so on.

19.
Histol Histopathol ; : 18674, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37982578

RESUMEN

Grin2d is an ionotropic NMDA receptor, a subunit of glutamate-dependent, and a facilitator of cellular calcium influx in neuronal tissue. In this study, we found that Grin2d expression was higher in esophageal cancer than in normal mucosa at both the mRNA and protein level using RT-PCR, bioinformatics analysis, and western blotting (p<0.05). Grin2d mRNA expression was positively correlated with old age, white race, heavy weight, distal location, adenocarcinoma, cancer with Barrett's lesion, or high-grade columnar dysplasia (p<0.05). The differential genes associated with Grin2d mRNA were involved in fat digestion and absorption, cholesterol metabolism, lipid transfer, lipoproteins, synaptic membranes, and ABC transporters (p<0.05). The Grin2d-related genes were classified into the following categories: metabolism of glycerolipids, galactose, and O-glycan, cell adhesion binding, actin binding, cadherin binding, the Hippo signaling pathway, cell-cell junctions, desmosomes, DNA-transcription activator binding, and skin development and differentiation (p<0.05). Grin2d immunoreactivity was positively correlated with distal metastasis and unfavorable overall survival in esophageal cancer (p<0.05). Grin2d overexpression promoted proliferation, migration, and invasion in esophageal cancer cells but blocked apoptosis (p<0.05) and increased the expression of PI3K, Akt and p-mTOR. Grin2d knockout caused the opposite effects. These findings indicated that upregulated Grin2d expression played an important role in esophageal carcinogenesis via the PI3K/Akt/mTOR pathway and might be a biological marker for aggressive tumor behavior and poor prognosis. Its silencing might represent a targeted therapy approach against esophageal cancer.

20.
Artículo en Inglés | MEDLINE | ID: mdl-37859316

RESUMEN

BACKGROUND AND AIM: Nonalcoholic fatty liver disease (NAFLD) is not only the top cause of liver diseases but also a hepatic-correlated metabolic syndrome. This study performed untargeted metabolomics analysis of NAFLD hamsters to identify the key metabolites to discriminate different stages of NAFLD. METHODS: Hamsters were fed a high-fat diet (HFD) to establish the NAFLD model with different stages (six weeks named as the NAFLD1 group and twelve weeks as the NAFLD2 group, respectively). Those liver samples were analyzed by untargeted metabolomics (UM) analysis to investigate metabolic changes and metabolites to discriminate different stages of NAFLD. RESULTS: The significant liver weight gain in NAFLD hamsters was observed, accompanied by significantly increased levels of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Moreover, the levels of TG, LDL-C, ALT, and AST were significantly higher in the NAFLD2 group than in the NAFLD1 group. The UM analysis also revealed the metabolic changes; 27 differently expressed metabolites were detected between the NAFLD2 and NAFLD1 groups. More importantly, the levels of N-methylalanine, allantoin, glucose, and glutamylvaline were found to be significantly different between any two groups (control, NAFLD2 and NAFLD1). Receiver operating characteristic curve (ROC) curve results also showed that these four metabolites are able to distinguish control, NAFLD1 and NAFLD2 groups. CONCLUSION: This study indicated that the process of NAFLD in hamsters is accompanied by different metabolite changes, and these key differently expressed metabolites may be valuable diagnostic biomarkers and responses to therapeutic interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA