RESUMEN
INTRODUCTION: Eosinophils contribute to the pathogenesis of allergic diseases, including asthma, allergic rhinitis, and atopic dermatitis. We previously reported that human tissue eosinophils have high CD69 expression compared to blood eosinophils, and its expression is correlated with disease severity and the number of infiltrated eosinophils. However, biological CD69 signaling activity in eosinophils remains unclear. METHODS: CD69 expression on lung tissue eosinophils obtained from mice with ovalbumin-induced asthma was measured using flow cytometry. CD69 crosslinking was performed on eosinophils purified from the spleen of IL-5 transgenic mice to investigate CD69 signaling and its function in eosinophils. Then, qPCR, Western blot, enzyme-linked immunosorbent assay, and survival assay results were analyzed. RESULTS: Surface CD69 expression on lung tissue eosinophils in the asthma mice model was 2.91% ± 0.76%, whereas no expression was detected in the healthy group. CD69-expressed eosinophils intrinsically have an upregulation of IL-10 mRNA expression. Moreover, CD69 crosslinking induced further pronounced IL-10 production and apoptosis; these responses were mediated via the Erk1/2 and JNK pathways, respectively. CONCLUSIONS: Our results suggested that CD69+ eosinophils play an immunoregulator role in type 2 inflammation, whereas activated tissue eosinophils contribute to the pathogenesis of asthma.
Asunto(s)
Asma , Eosinófilos , Animales , Humanos , Ratones , Antígenos CD/metabolismo , Apoptosis , Asma/metabolismo , Eosinófilos/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Sistema de Señalización de MAP QuinasasRESUMEN
Eosinophilic airway inflammation, complicated by bronchial asthma and eosinophilic chronic rhinosinusitis (ECRS), is difficult to treat. The disease may become refractory when eosinophilic mucin associated with eosinophil peroxidase (EPX) and autoantibodies fills in the paranasal sinus and small airway. This study investigated the functional role of an anti-EPX antibody in eosinophilic mucin of ECRS in eosinophilic airway inflammation. Eosinophilic mucin was obtained from patients with ECRS. The effects of the anti-EPX antibody on dsDNA release from eosinophils and eosinophilic mucin decomposition were evaluated. Immunofluorescence or enzyme-linked immunosorbent assays were performed to detect the anti-EPX antibody and its supernatant and serum levels in eosinophilic mucin, respectively. The serum levels of the anti-EPX antibody were positively correlated with sinus computed tomography score and fractionated exhaled nitrogen oxide. Patients with refractory ECRS had higher serum levels of the anti-EPX antibody than those without. However, dupilumab treatment decreased the serum levels of the anti-EPX antibody. Immunoglobulins (Igs) in the immunoprecipitate of mucin supernatants enhanced dsDNA release from eosinophils, whereas the neutralization of Igs against EPX stopped dsDNA release. Furthermore, EPX antibody neutralization accelerated mucin decomposition and restored corticosteroid sensitivity. Taken together, the anti-EPX antibody may be involved in the formulation of eosinophilic mucin and be used as a clinical marker and therapeutic target for intractable eosinophilic airway inflammation.
Asunto(s)
Peroxidasa del Eosinófilo , Eosinofilia , Mucinas , Sinusitis , Humanos , Anticuerpos , Peroxidasa del Eosinófilo/inmunología , Eosinofilia/tratamiento farmacológico , Eosinófilos , Inflamación , Mucinas/metabolismo , Sinusitis/tratamiento farmacológicoRESUMEN
This study reported two cases of acute life-threatening hemorrhage after Le Fort I osteotomy. In both cases, computed tomography and angiography revealed damage to the descending palatine artery, which was successfully treated by angiographic embolization. Although massive hemorrhage after Le Fort I osteotomy is rare, acute hemorrhage from the postoperative area may occur. Angiographic embolization is useful in cases of such hemorrhage from the posterior nasal cavity where endoscopic hemostasis is not possible.
RESUMEN
Despite the increase in age-related hearing loss (ARHL) prevalence owing to increased population aging, preventive measures against ARHL have not yet been established. The immune system becomes one of the most dysfunctional systems upon aging, and immunosenescence greatly affects homeostasis and promotes systemic aging along with chronic inflammation and oxidative stress. This study aimed to determine whether immuno-rejuvenation procedures can prevent ARHL and have clinical applications as well as to analyze the communication mechanisms between the systemic immune system and the cochlea using a murine model. Lymphocytes from young mice inhibited the progression of ARHL. The method of cryopreserving these lymphocytes and inoculating them at the onset of ARHL suggests their clinical application. Mice that were administered this treatment not only maintained auditory threshold but also avoided spinal ganglion degeneration, cellular immune aging, and nitric oxide production, which causes age-related tissue damage. These findings coincide with our previous strategies against immunosenescence and neuronal aging. Therefore, the manipulation of systemic immune function may contribute not only to the prevention of ARHL but also to the development of novel anti-aging clinical measures, paving the way to healthy longevity with preserved organ function.
Asunto(s)
Presbiacusia , Animales , Ratones , Modelos Animales de Enfermedad , Presbiacusia/prevención & control , Cóclea , Envejecimiento/fisiología , LinfocitosRESUMEN
Eosinophilic chronic rhinosinusitis (ECRS) is a refractory airway disease accompanied by eosinophilic inflammation, the mechanisms of which are unknown. We recently found that CCL4/MIP-1ß-a specific ligand for CCR5 receptors-was implicated in eosinophil recruitment into the inflammatory site and was substantially released from activated eosinophils. Moreover, it was found in nasal polyps from patients with ECRS, primarily in epithelial cells. In the present study, the role of epithelial cell-derived CCL4 in eosinophil activation was investigated. First, CCL4 expression in nasal polyps from patients with ECRS as well as its role of CCL4 in eosinophilic airway inflammation were investigated in an in vivo model. Furthermore, the role of CCL4 in CD69 expression-a marker of activated eosinophils-as well as the signaling pathways involved in CCL4-mediated eosinophil activation were investigated. Notably, CCL4 expression, but not CCL5, CCL11, or CCL26, was found to be significantly increased in nasal polyps from patients with ECRS associated with eosinophil infiltration as well as in BEAS-2B cells co-incubated with eosinophils. In an OVA-induced allergic mouse model, CCL4 increased eosinophil accumulation in the nasal mucosa and the bronchoalveolar lavage (BALF). Moreover, we found that CD69 expression was upregulated in CCL4-stimulated eosinophils; similarly, phosphorylation of several kinases, including platelet-derived growth factor receptor (PDGFR)ß, SRC kinase family (Lck, Src, and Yes), and extracellular signal-regulated kinase (ERK), was upregulated. Further, CCR5, PDGFRß, and/or Src kinase inhibition partially restored CCL4-induced CD69 upregulation. Thus, CCL4, which is derived from airway epithelial cells, plays a role in the accumulation and activation of eosinophils at inflammatory sites. These findings may provide a novel therapeutic target for eosinophilic airway inflammation, such as ECRS.
Asunto(s)
Eosinofilia , Pólipos Nasales , Rinitis , Sinusitis , Animales , Ratones , Eosinófilos/metabolismo , Rinitis/patología , Pólipos Nasales/patología , Eosinofilia/complicaciones , Sinusitis/metabolismo , Inflamación/metabolismo , Enfermedad CrónicaRESUMEN
Patients with differentiated thyroid cancer (DTC) usually have good prognosis, while those with advanced disease have poor clinical outcomes. This study aimed to investigate the antitumor effects of combination therapy with lenvatinib and 131I (CTLI) using three different types of DTC cell lines with different profiling of sodium iodide symporter (NIS) status. The radioiodine accumulation study revealed a significantly increased radioiodine uptake in K1-NIS cells after lenvatinib treatment, while there was almost no uptake in K1 and FTC-133 cells. However, lenvatinib administration before radioiodine treatment decreased radioiodine uptake of K1-NIS xenograft tumor in the in vivo imaging study. CTLI synergistically inhibited colony formation and DTC cell migration, especially in K1-NIS cells. Finally, 131I treatment followed by lenvatinib administration significantly inhibited tumor growth of the NIS-expressing thyroid cancer xenograft model. These results provide important clinical implications for the combined therapy that lenvatinib should be administered after 131I treatment to maximize the treatment efficacy. Our synergistic treatment effects by CTLI suggested its effectiveness for RAI-avid thyroid cancer, which retains NIS function. This potential combination therapy suggests a powerful and tolerable new therapeutic strategy for advanced thyroid cancer.
Asunto(s)
Quinolinas , Simportadores , Neoplasias de la Tiroides , Humanos , Radioisótopos de Yodo/metabolismo , Radioisótopos de Yodo/uso terapéutico , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Simportadores/genética , Simportadores/metabolismo , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/radioterapiaRESUMEN
Eosinophilic airway inflammatory disease is associated with bronchial asthma, with eosinophilic chronic rhinosinusitis (ECRS) typical of refractory type 2 airway inflammation. CCL4 produced at local inflammatory sites is involved in them via the accumulation and activation of type 2 inflammatory cells, including eosinophils. The detailed mechanism of CCL4 production remains unclear, and also the possibility it could function as a biomarker of type 2 airway inflammation remains unresolved. In this study, we evaluated CCL4 mRNA expression and production via the TSLP receptor (TSLPR) and toll-like receptors (TLRs) or proteinase-activated receptor-2 (PAR2) in BEAS-2B bronchial epithelial cells co-incubated with purified eosinophils or eosinophil peroxidase (EPX). We examined serum chemokine (CCL4, CCL11, CCL26, and CCL17) and total IgE serum levels, fractionated exhaled nitrogen oxide (FENO), and CCL4 expression in nasal polyps in patients with severe ECRS and asthma. CCL4 was induced by TSLP under eosinophilic inflammation. Furthermore, CCL4 was released via TLR3 signaling, which was enhanced by TSLP. CCL4 was mainly located in nasal polyp epithelial cells, while serum CCL4 levels were reduced after dupilumab treatment. Serum CCL4 levels were positively correlated with FENO, serum IgE, and CCL17 levels. Thus, CCL4 released from epithelial cells via the innate immune system during type 2 airway inflammation may function as a useful biomarker for the condition.
RESUMEN
Eosinophilic chronic rhinosinusitis (ECRS), which is a subgroup of chronic rhinosinusitis with nasal polyps, is characterized by eosinophilic airway inflammation extending across both the upper and lower airways. Some severe cases are refractory even after endoscopic sinus surgery, likely because of local steroid insensitivity. Although real-life studies indicate that treatment with omalizumab for severe allergic asthma improves the outcome of coexistent ECRS, the underlying mechanisms of omalizumab in eosinophilic airway inflammation have not been fully elucidated. Twenty-five patients with ECRS and severe asthma who were refractory to conventional treatments and who received omalizumab were evaluated. Nineteen of twenty-five patients were responsive to omalizumab according to physician-assessed global evaluation of treatment effectiveness. In the responders, the levels of peripheral blood eosinophils and fractionated exhaled nitric oxide (a marker of eosinophilic inflammation) and of CCL4 and soluble CD69 (markers of eosinophil activation) were reduced concomitantly with the restoration of corticosteroid sensitivity. Omalizumab restored the eosinophil-peroxidase-mediated PP2A inactivation and steroid insensitivity in BEAS-2B. In addition, the local inflammation simulant model using BEAS-2B cells incubated with diluted serum from each patient confirmed omalizumab's effects on restoration of corticosteroid sensitivity via PP2A activation; thus, omalizumab could be a promising therapeutic option for refractory eosinophilic airway inflammation with corticosteroid resistance.
RESUMEN
We investigated the association between cellular immunity and age-related hearing loss (ARHL) development using three CD4+ T cell fractions, namely, naturally occurring regulatory T cells (Treg), interleukin 1 receptor type 2-expressing T cells (I1R2), and non-Treg non-I1R2 (nTnI) cells, which comprised Treg and I1R2-deleted CD4+ T cells. Inoculation of the nTnI fraction into a ARHL murine model, not only prevented the development of ARHL and the degeneration of spiral ganglion neurons, but also suppressed serum nitric oxide, a source of oxidative stress. Further investigations on CD4+ T cell fractions could provide novel insights into the prevention of aging, including presbycusis.
Asunto(s)
Linfocitos T CD4-Positivos/trasplante , Presbiacusia/inmunología , Presbiacusia/prevención & control , Subgrupos de Linfocitos T/trasplante , Animales , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones , Receptores Tipo II de Interleucina-1/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunologíaRESUMEN
Although surgical treatment cures >90% of differentiated thyroid cancer (DTC) patients, the remaining patients, including advanced DTC cases, have poor clinical outcomes. These patients with inoperable disease have only two choices of radioactive iodine therapy and tyrosine kinase inhibitors such as lenvatinib, which have a high incidence of treatment-related adverse events and can only prolong progression free survival by approximately 5-15 months. In this study, we investigated the antitumor effects of combination therapy with lenvatinib and radiation (CTLR) for DTC. CTLR synergistically inhibited cell replication and colony formation in vitro and tumor growth in nude mice without apparent toxicities and suppressed the expression of proliferation marker (Ki-67). CTLR also induced apoptosis and G2/M phase cell cycle arrest. Moreover, quantitative analysis of the intracellular uptake of lenvatinib using liquid chromatography and mass spectrometry demonstrated that intracellular uptake of lenvatinib was significantly increased 48 h following irradiation. These data suggest that increased membrane permeability caused by irradiation increases the intracellular concentration of levatinib, contributing to the synergistic effect. This mechanism-based potential of combination therapy suggests a powerful new therapeutic strategy for advanced thyroid cancer with fewer side effects and might be a milestone for developing a regimen in clinical practice.
Asunto(s)
Antineoplásicos/farmacología , Rayos gamma , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Neoplasias de la Tiroides/terapia , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Terapia Combinada , Femenino , Humanos , Ratones , Ratones Congénicos , Ratones Desnudos , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Neoplasias de la Tiroides/patología , Células Tumorales CultivadasRESUMEN
Eosinophils not only play a critical role in the pathogenesis of eosinophil-associated diseases, but they also have multiple important biological functions, including the maintenance of homeostasis, host defense against infections, immune regulation through canonical Th1/Th2 balance modulation, and anti-inflammatory and anti-tumorigenic activities. Recent studies have elucidated some emerging roles of eosinophils in steady-state conditions; for example, eosinophils contribute to adipose tissue metabolism and metabolic health through alternatively activated macrophages and the maintenance of plasma cells in intestinal tissue and bone marrow. Moreover, eosinophils exert tissue damage through eosinophil-derived cytotoxic mediators that are involved in eosinophilic airway inflammation, leading to diseases including asthma and chronic rhinosinusitis with nasal polyps characterized by fibrin deposition through excessive response by eosinophils-induced. Thus, eosinophils possessing these various effects reflect the heterogenous features of these cells, which suggests the existence of distinct different subpopulations of eosinophils between steady-state and pathological conditions. Indeed, a recent study demonstrated that instead of dividing eosinophils by classical morphological changes into normodense and hypodense eosinophils, murine eosinophils from lung tissue can be phenotypically divided into two distinct subtypes: resident eosinophils and inducible eosinophils gated by Siglec-Fint CD62L+ CD101low and Siglec-Fhigh CD62L- CD101high, respectively. However, it is difficult to explain every function of eosinophils by rEos and iEos, and the relationship between the functions and subpopulations of eosinophils remains controversial. Here, we overview the multiple roles of eosinophils in the tissue and their biological behavior in steady-state and pathological conditions. We also discuss eosinophil subpopulations.
Asunto(s)
Plasticidad de la Célula , Susceptibilidad a Enfermedades , Eosinófilos/fisiología , Homeostasis , Animales , Biomarcadores , Comunicación Celular/inmunología , Plasticidad de la Célula/inmunología , Humanos , Inmunofenotipificación , Especificidad de Órganos/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
Eosinophilic chronic rhinosinusitis (ECRS), a subgroup of chronic rhinosinusitis with nasal polyps, is recognized as a refractory eosinophilic disorder characterized by both upper and lower airway inflammation. In some severe cases, disease control is poor, likely due to local steroid insensitivity. In this study, we focused on protein phosphatase 2A (PP2A), a key factor regulating glucocorticoid receptor (GR) nuclear translocation, and examined its association with local responses to corticosteroids in eosinophilic airway inflammation. Our results indicated reduced responses to corticosteroids in nasal epithelial cells from ECRS patients with asthma, which were also associated with decreased PP2A mRNA expression. Eosinophil peroxidase stimulates elevated PP2A phosphorylation levels, reducing PP2A protein expression and activity. In addition, mRNA levels of inflammatory mediators (TSLP, IL-25, IL-33, CCL4, CCL5, CCL11, and CCL26) associated with eosinophilic airway inflammation in epithelial cells were increased in nasal polyps (eosinophil-rich areas) compared with those in uncinate process tissues (eosinophil-poor areas) from the same patients. PP2A reduction by siRNA reduced GR nuclear translocation, whereas PP2A overexpression by plasmid transfection, or PP2A activation by formoterol, enhanced GR nuclear translocation. Collectively, our findings indicate that PP2A may represent a promising therapeutic target in refractory eosinophilic airway inflammation characterized by local steroid insensitivity.
Asunto(s)
Corticoesteroides/uso terapéutico , Eosinófilos/metabolismo , Rinitis/tratamiento farmacológico , Corticoesteroides/metabolismo , Adulto , Asma/tratamiento farmacológico , Asma/inmunología , Enfermedad Crónica , Citocinas/metabolismo , Eosinofilia/complicaciones , Eosinofilia/metabolismo , Eosinófilos/efectos de los fármacos , Femenino , Humanos , Inflamación , Masculino , Persona de Mediana Edad , Pólipos Nasales/complicaciones , Pólipos Nasales/metabolismo , Proteína Fosfatasa 2/metabolismo , Receptores de Glucocorticoides/metabolismo , Rinitis/complicaciones , Rinitis/inmunología , Sinusitis/complicaciones , Sinusitis/tratamiento farmacológicoRESUMEN
BACKGROUND: Eosinophilic chronic rhinosinusitis (ECRS) is a subtype of chronic rhinosinusitis associated with asthma. CD69 is an important marker of activation for eosinophils. But, whether a correlation exist between the CD69 expression on eosinophils and clinical findings is unclear. METHODS: We performed quantitative PCR and/or flow cytometry using tissue and purified eosinophils from the blood and nasal polyps of 12 patients with ECRS and from 8 patients without ECRS (controls). We assessed clinical findings including nasal polyp (NP) scores, sinus CT findings, and pulmonary function test results, and examined their possible association with the CD69 expression. We also performed CD69 cross-linking experiments in mouse eosinophils to investigate the functional role of CD69. RESULTS: Levels of cytokine mRNAs (IL-4, -5, -10, and -13) were significantly higher in purified NP eosinophils and tissues from patients with ECRS than the levels of those in controls. The expressions of major basic protein (MBP), eosinophilic cationic protein (ECP), eosinophilic-derived neurotoxin (EDN), eosinophil peroxidase (EPX) in cytotoxic granules, and CD69 mRNA were significantly higher in purified eosinophils from NPs than in those from blood. We also found a correlation between expression of CD69 and clinical findings. Moreover, we found EPX release from mouse eosinophils following CD69 cross-linking. CONCLUSIONS: These data suggest that increased CD69 expression by eosinophils is not only a biomarker for nasal obstruction and pulmonary dysfunction, but also a potential therapeutic target for patients with ECRS and asthma.
Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Biomarcadores/metabolismo , Eosinofilia/metabolismo , Eosinófilos/inmunología , Lectinas Tipo C/metabolismo , Pólipos Nasales/metabolismo , Rinitis/metabolismo , Sinusitis/metabolismo , Adulto , Anciano , Células Cultivadas , Enfermedad Crónica , Citocinas/genética , Citocinas/metabolismo , Humanos , Persona de Mediana Edad , Regulación hacia ArribaRESUMEN
BACKGROUND: Eosinophilic cholecystitis (EC) is a rare condition that presents in a manner comparable to acute cholecystitis. The diagnosis is based on classical symptoms of cholecystitis with excessive eosinophilic infiltration within the gallbladder. EC has been reported alone or in combination with manifestations, such as eosinophilic gastrointestinal tract inflammation. However, association with airway inflammation in patients with EC is rare.Case Presentation: We report the case of a 65-year-old man who had refractory eosinophilic chronic rhinosinusitis with bronchial asthma. A second endoscopic sinus surgery (ESS) was performed as treatment for recurrent nasal polyps. EC occurred while inhaled corticosteroids were reduced after ESS. Pathologic examination of the excised gallbladder demonstrated submucosal infiltration with a number of eosinophils. Furthermore, immunohistostaining revealed many galectin-10-positive cells in both the gallbladder mucosa and the paranasal sinus mucosa. Galectin-10 is a major constituent of human eosinophils, also known as the Charcot-Leyden crystal protein, which has been linked with eosinophilic inflammation. Interestingly, nasal polyps were reduced without any additional treatments 1 month after the cholecystectomy. CONCLUSIONS: We experienced a rare case wherein EC onset occurred in a patient with refractory eosinophilic airway inflammation during inhaled corticosteroid tapering. Galectin-10 might help diagnose rare cases of eosinophilic inflammation in multiple organs.
RESUMEN
Airway hyperresponsiveness (AHR) has been proposed as a feature of pathogenesis of eosinophilic upper airway inflammation such as allergic rhinitis (AR). The measurement system for upper AHR (UAHR) in rodents is poorly developed, although measurements of nasal resistance have been reported. Here we assessed UAHR by direct measurement of swelling of the nasal mucosa induced by intranasal methacholine (MCh) using micro-computed tomography (micro-CT). Micro-CT analysis was performed in both naïve and ovalbumin-induced AR mice following intranasal administration of MCh. The nasal cavity was segmented into two-dimensional horizontal and axial planes, and the data for nasal mucosa were acquired for the region of interest threshold. Then, a ratio between the nasal mucosa area and nasal cavity area was calculated as nasal mucosa index. Using our novel method, nasal cavity structure was clearly identified on micro-CT, and dose-dependent increased swelling of the nasal mucosa was observed upon MCh treatment. Moreover, the nasal mucosa index was significantly increased in AR mice compared to controls following MCh treatment, while ovalbumin administration did not affect swelling of the nasal mucosa in either group. This UAHR following MCh treatment was completely reversed by pretreatment with glucocorticoids. This novel approach using micro-CT for investigating UAHR reflects a precise assessment system for swelling of the nasal mucosa following MCh treatment; it not only sheds light on the mechanism of AR but also contributes to the development of new therapeutic drugs in AR patients.
Asunto(s)
Modelos Animales de Enfermedad , Inflamación/diagnóstico por imagen , Hipersensibilidad Respiratoria/diagnóstico por imagen , Rinitis Alérgica/diagnóstico por imagen , Microtomografía por Rayos X , Animales , Femenino , Inflamación/inducido químicamente , Ratones , Ratones Endogámicos BALB C , Mucosa Nasal/diagnóstico por imagen , Ovalbúmina , Hipersensibilidad Respiratoria/inducido químicamente , Rinitis Alérgica/inducido químicamenteRESUMEN
BACKGROUND: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a refractory upper airway disease, accompanied mainly by eosinophilia and/or asthma. In addition, the disease correlates with a high rate of hyposmia, following a marked infiltration of eosinophils into the inflamed site, the paranasal sinus. Although eosinophils are known to contribute to the development of hyposmia and CRSwNP pathology, the underlying mechanisms remain unclear. This study aimed to investigate whether eosinophilic upper airway inflammation induces hyposmia and CRSwNP in a murine model using an adoptive transfer system. METHODS: To induce eosinophilic rhinosinusitis, splenocytes, including a high proportion (over 50%) of activated eosinophils (SPLhEos), were collected from interleukin-5 transgenic mice following double intraperitoneal injections of antigens, such as ovalbumin, house dust mite, or fungus. Activated SPLhEos with corresponding antigens were then transferred into the nasal cavity of recipient mice, which were sensitized and challenged by the corresponding antigen four times per week. Olfactory function, histopathological, and computed tomography (CT) analyses were performed 2 days after the final transfer of eosinophils. RESULTS: Hyposmia was induced significantly in mice that received SPLhEos transfer compared with healthy and allergic mice, but it did not promote morphological alteration of the paranasal sinus. Pathological analysis revealed that epithelial layer injury and metaplasia similar to polyps, with prominent eosinophil infiltration, was induced in recipient tissue. However, there was no nasal polyp development with interstitial edema that was similar to those recognized in human chronic rhinosinusitis. CONCLUSIONS: This study supports the previously unsuspected contribution of eosinophils to CRS development in the murine model and suggests that murine-activated eosinophilic splenocytes contribute to the development of hyposmia due to more mucosal inflammation than physical airway obstruction and epithelial layer injury with convex lesions.
RESUMEN
Inferior colliculus (IC) is a major center for the integration and processing of acoustic information from ascending auditory pathways. Damage to the IC as well as normal aging can impair auditory function. Novel strategies such as stem cell (SC)-based regenerative therapy are required for functional recovery because mature neural cells have a minimal regenerative capacity after an injury. However, it is not known if there are neural stem cells (NSCs) in the IC. Herein, we screened for NSCs by surface marker analysis using flow cytometry. Isolated IC cells expressing prominin-1 (CD133) exhibited the cardinal NSC properties self-renewal capacity, expression of known NSC markers (SOX2 and nestin), and multipotency. Prominin-1-expressing cells from neonatal IC generated neurospheres, and culture of these neurospheres in differentiation-conditioned medium gave rise to gamma-aminobutyric acid-ergic (GABAergic) neurons, astrocytes, and oligodendrocytes. The presence of NSC-like cells in the IC has important implications for understanding IC development and for potential regenerative therapy.