Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 1402, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926793

RESUMEN

Protein-protein interactions (PPIs) governing the recognition of substrates by E3 ubiquitin ligases are critical to cellular function. There is significant therapeutic potential in the development of small molecules that modulate these interactions; however, rational design of small molecule enhancers of PPIs remains elusive. Herein, we report the prospective identification and rational design of potent small molecules that enhance the interaction between an oncogenic transcription factor, ß-Catenin, and its cognate E3 ligase, SCFß-TrCP. These enhancers potentiate the ubiquitylation of mutant ß-Catenin by ß-TrCP in vitro and induce the degradation of an engineered mutant ß-Catenin in a cellular system. Distinct from PROTACs, these drug-like small molecules insert into a naturally occurring PPI interface, with contacts optimized for both the substrate and ligase within the same small molecule entity. The prospective discovery of 'molecular glue' presented here provides a paradigm for the development of small molecule degraders targeting hard-to-drug proteins.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Células HEK293 , Humanos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Especificidad por Sustrato/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , beta Catenina/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo
2.
FASEB J ; 28(7): 2790-803, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24671708

RESUMEN

Controlled mechanical ventilation (CMV) is associated with the development of diaphragm atrophy and contractile dysfunction, and respiratory muscle weakness is thought to contribute significantly to delayed weaning of patients. Therefore, therapeutic strategies for preventing these processes may have clinical benefit. The aim of the current study was to investigate the role of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in CMV-mediated diaphragm wasting and weakness in rats. CMV-induced diaphragm atrophy and contractile dysfunction coincided with marked increases in STAT3 phosphorylation on both tyrosine 705 (Tyr705) and serine 727 (Ser727). STAT3 activation was accompanied by its translocation into mitochondria within diaphragm muscle and mitochondrial dysfunction. Inhibition of JAK signaling during CMV prevented phosphorylation of both target sites on STAT3, eliminated the accumulation of phosphorylated STAT3 within the mitochondria, and reversed the pathologic alterations in mitochondrial function, reduced oxidative stress in the diaphragm, and maintained normal diaphragm contractility. In addition, JAK inhibition during CMV blunted the activation of key proteolytic pathways in the diaphragm, as well as diaphragm atrophy. These findings implicate JAK/STAT3 signaling in the development of diaphragm muscle atrophy and dysfunction during CMV and suggest that the delayed extubation times associated with CMV can be prevented by inhibition of Janus kinase signaling.-Smith, I. J., Godinez, G. L., Singh, B. K., McCaughey, K. M., Alcantara, R. R., Gururaja, T., Ho, M. S., Nguyen, H. N., Friera, A. M., White, K. A., McLaughlin, J. R., Hansen, D., Romero, J. M., Baltgalvis, K. A., Claypool, M. D., Li, W., Lang, W., Yam, G. C., Gelman, M. S., Ding, R., Yung, S. L., Creger, D. P., Chen, Y., Singh, R., Smuder, A. J., Wiggs, M. P., Kwon, O.-S., Sollanek, K. J., Powers, S. K., Masuda, E. S., Taylor, V. C., Payan, D. G., Kinoshita, T., Kinsella, T. M. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction.


Asunto(s)
Diafragma/metabolismo , Quinasas Janus/metabolismo , Respiración Artificial/efectos adversos , Transducción de Señal/fisiología , Animales , Interleucina-6/metabolismo , Masculino , Mitocondrias/metabolismo , Debilidad Muscular/metabolismo , Atrofia Muscular/metabolismo , Estrés Oxidativo/fisiología , Fosforilación/fisiología , Proteolisis , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Serina/metabolismo , Tirosina/metabolismo
3.
PLoS One ; 8(12): e81870, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339975

RESUMEN

Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK). Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC50 100 nM vs 27 mM, respectively). R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both (13)C-palmitate and (13)C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO2 in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mitocondrias Hepáticas/metabolismo , Células Musculares/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Diabetes Mellitus Experimental/patología , Activación Enzimática/efectos de los fármacos , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Células Hep G2 , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología , Ratones , Mitocondrias Hepáticas/patología , Células Musculares/patología , Oxidación-Reducción/efectos de los fármacos , Palmitatos/farmacología , Inhibidores de Proteínas Quinasas/farmacología
4.
J Pharmacol Exp Ther ; 320(2): 900-6, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17110523

RESUMEN

A previously described VPAC2-selective agonist, BAY 55-9837 (peptide HSDAVFTDNYTRLRKQVAAKKYLQSIKNKRY), had several limitations with respect to its potential as an insulin secretagogue for the treatment of type 2 diabetes. These limitations were primarily poor stability in aqueous buffer and short duration of action in vivo. In this report, we describe a series of novel analogs of BAY 55-9837 that were designed around the likely degradation mechanisms and structure-activity relationship of this peptide with a view to overcoming its limitations. These analogs were tested for improved liquid stability and retention of VPAC2-selective binding and activation, as well as prolonged activity in vivo. Although several degradation mechanisms were possible based on the degradation pattern, it was determined that deamidation at the two asparagines (N9 and N28) was the major instability determinant. Changing these two asparagines to glutamines did not negatively affect VPAC2-selective binding and activation. The double glutamine mutein analog, BAY(Q9Q28), retained full VPAC2 activity and selectivity while displaying no significant degradation when stored at 40 degrees C for 4 weeks. This is in contrast to BAY 55-9837, which showed greater than 80% degradation when stored at 40 degrees C for 2 weeks. A cysteine was added to the C terminus of BAY(Q9Q28), followed by site-specific cysteine conjugation with a 22- or 43-kDa polyethylene glycol (PEG) to yield BAY(Q9Q28C32)PEG22 or BAY(Q9Q28C32)PEG43, respectively. These PEGylated peptides retain the ability to selectively bind and activate the VPAC2 receptor and have prolonged glucose-lowering activity in vivo.


Asunto(s)
Hipoglucemiantes/farmacología , Fragmentos de Péptidos/farmacología , Receptores de Tipo II del Péptido Intestinal Vasoactivo/agonistas , Secuencia de Aminoácidos , Animales , Glucemia/análisis , Células CHO , Cricetinae , Cricetulus , Estabilidad de Medicamentos , Masculino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Polietilenglicoles , Ratas , Ratas Wistar , Péptido Intestinal Vasoactivo/farmacología
5.
J Biol Chem ; 281(18): 12506-15, 2006 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-16505481

RESUMEN

The closely related peptides glucagon-like peptide (GLP-1) and glucagon have opposing effects on blood glucose. GLP-1 induces glucose-dependent insulin secretion in the pancreas, whereas glucagon stimulates gluconeogenesis and glycogenolysis in the liver. The identification of a hybrid peptide acting as both a GLP-1 agonist and a glucagon antagonist would provide a novel approach for the treatment of type 2 diabetes. Toward this end a series of hybrid peptides made up of glucagon and either GLP-1 or exendin-4, a GLP-1 agonist, was engineered. Several peptides that bind to both the GLP-1 and glucagon receptors were identified. The presence of glucagon sequence at the N terminus removed the dipeptidylpeptidase IV cleavage site and increased plasma stability compared with GLP-1. Targeted mutations were incorporated into the optimal dual-receptor binding peptide to identify a peptide with the highly novel property of functioning as both a GLP-1 receptor agonist and a glucagon receptor antagonist. To overcome the short half-life of this mutant peptide in vivo, while retaining dual GLP-1 agonist and glucagon antagonist activities, site-specific attachment of long chained polyethylene glycol (PEGylation) was pursued. PEGylation at the C terminus retained the in vitro activities of the peptide while dramatically prolonging the duration of action in vivo. Thus, we have generated a novel dual-acting peptide with potential for development as a therapeutic for type 2 diabetes.


Asunto(s)
Péptidos/química , Receptores de Glucagón/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diseño de Fármacos , Receptor del Péptido 1 Similar al Glucagón , Humanos , Masculino , Datos de Secuencia Molecular , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de Glucagón/agonistas , Homología de Secuencia de Aminoácido
6.
J Biol Chem ; 278(12): 10273-81, 2003 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-12525492

RESUMEN

Pituitary adenylate cyclase-activating peptide (PACAP) has a specific receptor PAC1 and shares two receptors VPAC1 and VPAC2 with vasoactive intestinal peptide (VIP). VPAC2 activation enhances glucose-induced insulin release while VPAC1 activation elevates glucose output. To generate a large pool of VPAC2 selective agonists for the treatment of type 2 diabetes, structure-activity relationship studies were performed on PACAP, VIP, and a VPAC2 selective VIP analog. Chemical modifications on this analog that prevent recombinant expression were sequentially removed to show that a recombinant peptide would retain VPAC2 selectivity. An efficient recombinant expression system was then developed to produce and screen hundreds of mutant peptides. The 11 mutations found on the VIP analog were systematically replaced with VIP or PACAP sequences. Three of these mutations, V19A, L27K, and N28K, were sufficient to provide most of the VPAC2 selectivity. C-terminal extension with the KRY sequence from PACAP38 led to potent VPAC2 agonists with improved selectivity (100-1000-fold). Saturation mutagenesis at positions 19, 27, 29, and 30 of VIP and charge-scanning mutagenesis of PACAP27 generated additional VPAC2 selective agonists. We have generated the first set of recombinant VPAC2 selective agonists described, which exhibit activity profiles that suggest therapeutic utility in the treatment of diabetes.


Asunto(s)
Neuropéptidos/farmacología , Receptores de Péptido Intestinal Vasoactivo/agonistas , Péptido Intestinal Vasoactivo/farmacología , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Neuropéptidos/química , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores de Tipo II del Péptido Intestinal Vasoactivo , Proteínas Recombinantes/farmacología , Relación Estructura-Actividad , Péptido Intestinal Vasoactivo/química
7.
Diabetes ; 51(5): 1453-60, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11978642

RESUMEN

Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) activate two shared receptors, VPAC1 and VPAC2. Activation of VPAC1 has been implicated in elevating glucose output, whereas activation of VPAC2 may be involved in insulin secretion. A hypothesis that a VPAC2-selective agonist would enhance glucose disposal by stimulating insulin secretion without causing increased hepatic glucose production was tested using a novel selective agonist of VPAC2. This agonist, BAY 55-9837, was generated through site-directed mutagenesis based on sequence alignments of PACAP, VIP, and related analogs. The peptide bound to VPAC2 with a dissociation constant (K(d)) of 0.65 nmol/l and displayed >100-fold selectivity over VPAC1. BAY 55-9837 stimulated glucose-dependent insulin secretion in isolated rat and human pancreatic islets, increased insulin synthesis in purified rat islets, and caused a dose-dependent increase in plasma insulin levels in fasted rats, with a half-maximal stimulatory concentration of 3 pmol/kg. Continuous intravenous or subcutaneous infusion of the peptide reduced the glucose area under the curve following an intraperitoneal glucose tolerance test. The peptide had effects on intestinal water retention and mean arterial blood pressure in rats, but only at much higher doses. BAY 55-9837 may be a useful therapy for the treatment of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Fragmentos de Péptidos/farmacología , Receptores de Péptido Intestinal Vasoactivo/agonistas , Péptido Intestinal Vasoactivo/farmacología , Secuencia de Aminoácidos , Animales , Presión Sanguínea/efectos de los fármacos , Células Cultivadas , Diarrea/tratamiento farmacológico , Diarrea/metabolismo , Glucosa/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Hormonas/sangre , Humanos , Inyecciones Intravenosas , Inyecciones Subcutáneas , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Ratas , Ratas Wistar , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Receptores de la Hormona Hipofisaria/metabolismo , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo , Péptido Intestinal Vasoactivo/análogos & derivados , Péptido Intestinal Vasoactivo/química , Péptido Intestinal Vasoactivo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...