Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(26): 260801, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38996278

RESUMEN

The goal of quantum metrology is to improve measurements' sensitivities by harnessing quantum resources. Metrologists often aim to maximize the quantum Fisher information, which bounds the measurement setup's sensitivity. In studies of fundamental limits on metrology, a paradigmatic setup features a qubit (spin-half system) subject to an unknown rotation. One obtains the maximal quantum Fisher information about the rotation if the spin begins in a state that maximizes the variance of the rotation-inducing operator. If the rotation axis is unknown, however, no optimal single-qubit sensor can be prepared. Inspired by simulations of closed timelike curves, we circumvent this limitation. We obtain the maximum quantum Fisher information about a rotation angle, regardless of the unknown rotation axis. To achieve this result, we initially entangle the probe qubit with an ancilla qubit. Then, we measure the pair in an entangled basis, obtaining more information about the rotation angle than any single-qubit sensor can achieve. We demonstrate this metrological advantage using a two-qubit superconducting quantum processor. Our measurement approach achieves a quantum advantage, outperforming every entanglement-free strategy.

2.
Phys Rev Lett ; 131(15): 150202, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897785

RESUMEN

We construct a metrology experiment in which the metrologist can sometimes amend the input state by simulating a closed timelike curve, a worldline that travels backward in time. The existence of closed timelike curves is hypothetical. Nevertheless, they can be simulated probabilistically by quantum-teleportation circuits. We leverage such simulations to pinpoint a counterintuitive nonclassical advantage achievable with entanglement. Our experiment echoes a common information-processing task: A metrologist must prepare probes to input into an unknown quantum interaction. The goal is to infer as much information per probe as possible. If the input is optimal, the information gained per probe can exceed any value achievable classically. The problem is that, only after the interaction does the metrologist learn which input would have been optimal. The metrologist can attempt to change the input by effectively teleporting the optimal input back in time, via entanglement manipulation. The effective time travel sometimes fails but ensures that, summed over trials, the metrologist's winnings are positive. Our Gedankenexperiment demonstrates that entanglement can generate operational advantages forbidden in classical chronology-respecting theories.

3.
Phys Rev Lett ; 130(14): 140402, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084457

RESUMEN

The eigenstate thermalization hypothesis (ETH) explains why nonintegrable quantum many-body systems thermalize internally if the Hamiltonian lacks symmetries. If the Hamiltonian conserves one quantity ("charge"), the ETH implies thermalization within a charge sector-in a microcanonical subspace. But quantum systems can have charges that fail to commute with each other and so share no eigenbasis; microcanonical subspaces may not exist. Furthermore, the Hamiltonian will have degeneracies, so the ETH need not imply thermalization. We adapt the ETH to noncommuting charges by positing a non-Abelian ETH and invoking the approximate microcanonical subspace introduced in quantum thermodynamics. Illustrating with SU(2) symmetry, we apply the non-Abelian ETH in calculating local operators' time-averaged and thermal expectation values. In many cases, we prove, the time average thermalizes. However, we find cases in which, under a physically reasonable assumption, the time average converges to the thermal average unusually slowly as a function of the global-system size. This work extends the ETH, a cornerstone of many-body physics, to noncommuting charges, recently a subject of intense activity in quantum thermodynamics.

4.
Phys Rev Lett ; 129(4): 048001, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35939007

RESUMEN

We experimentally measure a three-dimensional (3D) granular system's reversibility under cyclic compression. We image the grains using a refractive-index-matched fluid, then analyze the images using the artificial intelligence of variational autoencoders. These techniques allow us to track all the grains' translations and 3D rotations with accuracy sufficient to infer sliding and rolling displacements. Our observations reveal unique roles played by 3D rotational motions in granular flows. We find that rotations and contact-point motion dominate the dynamics in the bulk, far from the perturbation's source. Furthermore, we determine that 3D rotations are irreversible under cyclic compression. Consequently, contact-point sliding, which is dissipative, accumulates throughout the cycle. Using numerical simulations whose accuracy our experiment supports, we discover that much of the dissipation occurs in the bulk, where grains rotate more than they translate. Our observations suggest that the analysis of 3D rotations is needed for understanding granular materials' unique and powerful ability to absorb and dissipate energy.

5.
Sci Rep ; 11(1): 9333, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927225

RESUMEN

Diverse many-body systems, from soap bubbles to suspensions to polymers, learn and remember patterns in the drives that push them far from equilibrium. This learning may be leveraged for computation, memory, and engineering. Until now, many-body learning has been detected with thermodynamic properties, such as work absorption and strain. We progress beyond these macroscopic properties first defined for equilibrium contexts: We quantify statistical mechanical learning using representation learning, a machine-learning model in which information squeezes through a bottleneck. By calculating properties of the bottleneck, we measure four facets of many-body systems' learning: classification ability, memory capacity, discrimination ability, and novelty detection. Numerical simulations of a classical spin glass illustrate our technique. This toolkit exposes self-organization that eludes detection by thermodynamic measures: Our toolkit more reliably and more precisely detects and quantifies learning by matter while providing a unifying framework for many-body learning.

6.
Phys Rev Lett ; 126(10): 100403, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33784149

RESUMEN

Traditional uncertainty relations dictate a minimal amount of noise in incompatible projective quantum measurements. However, not all measurements are projective. Weak measurements are minimally invasive methods for obtaining partial state information without projection. Recently, weak measurements were shown to obey an uncertainty relation cast in terms of entropies. We experimentally test this entropic uncertainty relation with strong and weak measurements of a superconducting transmon qubit. A weak measurement, we find, can reconcile two strong measurements' incompatibility, via backaction on the state. Mathematically, a weak value-a preselected and postselected expectation value-lowers the uncertainty bound. Hence we provide experimental support for the physical interpretation of the weak value as a determinant of a weak measurement's ability to reconcile incompatible operations.

7.
Nat Commun ; 11(1): 3775, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728082

RESUMEN

In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of a particular quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution is real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. Negative quasiprobabilities enable postselected experiments to outperform optimal postselection-free experiments: postselected quantum experiments can yield anomalously large information-cost rates. This advantage, we prove, is unrealizable in any classically commuting theory. Finally, we construct a preparation-and-postselection procedure that yields an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool.

8.
Phys Rev E ; 101(4-1): 042117, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32422760

RESUMEN

In statistical mechanics, a small system exchanges conserved quantities-heat, particles, electric charge, etc.-with a bath. The small system thermalizes to the canonical ensemble or the grand canonical ensemble, etc., depending on the quantities. The conserved quantities are represented by operators usually assumed to commute with each other. This assumption was removed within quantum-information-theoretic (QI-theoretic) thermodynamics recently. The small system's long-time state was dubbed "the non-Abelian thermal state (NATS)." We propose an experimental protocol for observing a system thermalize to the NATS. We illustrate with a chain of spins, a subset of which forms the system of interest. The conserved quantities manifest as spin components. Heisenberg interactions push the conserved quantities between the system and the effective bath, the rest of the chain. We predict long-time expectation values, extending the NATS theory from abstract idealization to finite systems that thermalize with finite couplings for finite times. Numerical simulations support the analytics: The system thermalizes to near the NATS, rather than to the canonical prediction. Our proposal can be implemented with ultracold atoms, nitrogen-vacancy centers, trapped ions, quantum dots, and perhaps nuclear magnetic resonance. This work introduces noncommuting conserved quantities from QI-theoretic thermodynamics into quantum many-body physics: atomic, molecular, and optical physics and condensed matter.

9.
Sci Am ; 322(5): 64, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-39014587
10.
Phys Rev Lett ; 122(4): 040404, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768319

RESUMEN

Out-of-time-ordered correlators (OTOCs) have received considerable recent attention as qualitative witnesses of information scrambling in many-body quantum systems. Theoretical discussions of OTOCs typically focus on closed systems, raising the question of their suitability as scrambling witnesses in realistic open systems. We demonstrate empirically that the nonclassical negativity of the quasiprobability distribution (QPD) behind the OTOC is a more sensitive witness for scrambling than the OTOC itself. Nonclassical features of the QPD evolve with timescales that are robust with respect to decoherence and are immune to false positives caused by decoherence. To reach this conclusion, we numerically simulate spin-chain dynamics and three measurement protocols (the interferometric, quantum-clock, and weak-measurement schemes) for measuring OTOCs. We target experiments based on quantum-computing hardware such as superconducting qubits and trapped ions.

11.
Phys Rev E ; 97(5-1): 052135, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29906852

RESUMEN

Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.

12.
Nat Commun ; 7: 12051, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27384494

RESUMEN

The grand canonical ensemble lies at the core of quantum and classical statistical mechanics. A small system thermalizes to this ensemble while exchanging heat and particles with a bath. A quantum system may exchange quantities represented by operators that fail to commute. Whether such a system thermalizes and what form the thermal state has are questions about truly quantum thermodynamics. Here we investigate this thermal state from three perspectives. First, we introduce an approximate microcanonical ensemble. If this ensemble characterizes the system-and-bath composite, tracing out the bath yields the system's thermal state. This state is expected to be the equilibrium point, we argue, of typical dynamics. Finally, we define a resource-theory model for thermodynamic exchanges of noncommuting observables. Complete passivity-the inability to extract work from equilibrium states-implies the thermal state's form, too. Our work opens new avenues into equilibrium in the presence of quantum noncommutation.

13.
Phys Rev E ; 93(5): 052144, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27300866

RESUMEN

The difference ΔF between free energies has applications in biology, chemistry, and pharmacology. The value of ΔF can be estimated from experiments or simulations, via fluctuation theorems developed in statistical mechanics. Calculating the error in a ΔF estimate is difficult. Worse, atypical trials dominate estimates. How many trials one should perform was estimated roughly by Jarzynski [Phys. Rev. E 73, 046105 (2006)PLEEE81539-375510.1103/PhysRevE.73.046105]. We enhance the approximation with the following information-theoretic strategies. We quantify "dominance" with a tolerance parameter chosen by the experimenter or simulator. We bound the number of trials one should expect to perform, using the order-∞ Rényi entropy. The bound can be estimated if one implements the "good practice" of bidirectionality, known to improve estimates of ΔF. Estimating ΔF from this number of trials leads to an error that we bound approximately. Numerical experiments on a weakly interacting dilute classical gas support our analytical calculations.


Asunto(s)
Interpretación Estadística de Datos , Entropía
14.
Phys Rev E ; 93(2): 022126, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26986307

RESUMEN

Thermodynamics has recently been extended to small scales with resource theories that model heat exchanges. Real physical systems exchange diverse quantities: heat, particles, angular momentum, etc. We generalize thermodynamic resource theories to exchanges of observables other than heat, to baths other than heat baths, and to free energies other than the Helmholtz free energy. These generalizations are illustrated with "grand-potential" theories that model movements of heat and particles. Free operations include unitaries that conserve energy and particle number. From this conservation law and from resource-theory principles, the grand-canonical form of the free states is derived. States are shown to form a quasiorder characterized by free operations, d majorization, the hypothesis-testing entropy, and rescaled Lorenz curves. We calculate the work distillable from-and we bound the work cost of creating-a state. These work quantities can differ but converge to the grand potential in the thermodynamic limit. Extending thermodynamic resource theories beyond heat baths, we open diverse realistic systems to modeling with one-shot statistical mechanics. Prospective applications such as electrochemical batteries are hoped to bridge one-shot theory to experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...