Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 26(7): 107051, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37426350

RESUMEN

Angiogenesis is a sequential process to extend new blood vessels from preexisting ones by sprouting and branching. During angiogenesis, endothelial cells (ECs) exhibit inhomogeneous multicellular behaviors referred to as "cell mixing," in which ECs repetitively exchange their relative positions, but the underlying mechanism remains elusive. Here we identified the coordinated linear and rotational movements potentiated by cell-cell contact as drivers of sprouting angiogenesis using in vitro and in silico approaches. VE-cadherin confers the coordinated linear motility that facilitated forward sprout elongation, although it is dispensable for rotational movement, which was synchronous without VE-cadherin. Mathematical modeling recapitulated the EC motility in the two-cell state and angiogenic morphogenesis with the effects of VE-cadherin-knockout. Finally, we found that VE-cadherin-dependent EC compartmentalization potentiated branch elongations, and confirmed this by mathematical simulation. Collectively, we propose a way to understand angiogenesis, based on unique EC behavioral properties that are partially dependent on VE-cadherin function.

2.
J Theor Biol ; 555: 111300, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36209900

RESUMEN

A two-dimensional mathematical model for dynamics of endothelial cells in angiogenesis is investigated. Angiogenesis is a morphogenic process in which new blood vessels emerge from an existing vascular network. Recently a one-dimensional discrete dynamical model has been proposed to reproduce elongation, bifurcation, and cell motility such as cell-mixing during angiogenesis on the assumption of a simple two-body interaction between endothelial cells. The present model is its two-dimensional extension, where endothelial cells are represented as the ellipses with the two-body interactions: repulsive interaction due to excluded volume effect, attractive interaction through pseudopodia and rotation by contact. We show that the oblateness of ellipses and the magnitude of contact rotation significantly affect the shape of created vascular patterns and elongation of branches.


Asunto(s)
Células Endoteliales , Neovascularización Patológica , Humanos , Morfogénesis , Movimiento Celular , Modelos Teóricos , Neovascularización Fisiológica
3.
Sci Rep ; 9(1): 9304, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243314

RESUMEN

Vascular endothelial cells (ECs) in angiogenesis exhibit inhomogeneous collective migration called "cell mixing", in which cells change their relative positions by overtaking each other. However, how such complex EC dynamics lead to the formation of highly ordered branching structures remains largely unknown. To uncover hidden laws of integration driving angiogenic morphogenesis, we analyzed EC behaviors in an in vitro angiogenic sprouting assay using mouse aortic explants in combination with mathematical modeling. Time-lapse imaging of sprouts extended from EC sheets around tissue explants showed directional cohesive EC movements with frequent U-turns, which often coupled with tip cell overtaking. Imaging of isolated branches deprived of basal cell sheets revealed a requirement of a constant supply of immigrating cells for ECs to branch forward. Anisotropic attractive forces between neighboring cells passing each other were likely to underlie these EC motility patterns, as evidenced by an experimentally validated mathematical model. These results suggest that cohesive movements with anisotropic cell-to-cell interactions characterize the EC motility, which may drive branch elongation depending on a constant cell supply. The present findings provide novel insights into a cell motility-based understanding of angiogenic morphogenesis.


Asunto(s)
Aorta/patología , Movimiento Celular , Células Endoteliales/citología , Neovascularización Fisiológica , Animales , Anisotropía , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Teóricos , Morfogénesis , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...