Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 72(6): 925-941.e4, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30576655

RESUMEN

BRCA1-deficient tumor cells have defects in homologous-recombination repair and replication fork stability, resulting in PARP inhibitor sensitivity. Here, we demonstrate that a deubiquitinase, USP1, is upregulated in tumors with mutations in BRCA1. Knockdown or inhibition of USP1 resulted in replication fork destabilization and decreased viability of BRCA1-deficient cells, revealing a synthetic lethal relationship. USP1 binds to and is stimulated by fork DNA. A truncated form of USP1, lacking its DNA-binding region, was not stimulated by DNA and failed to localize and protect replication forks. Persistence of monoubiquitinated PCNA at the replication fork was the mechanism of cell death in the absence of USP1. Taken together, USP1 exhibits DNA-mediated activation at the replication fork, protects the fork, and promotes survival in BRCA1-deficient cells. Inhibition of USP1 may be a useful treatment for a subset of PARP-inhibitor-resistant BRCA1-deficient tumors with acquired replication fork stabilization.


Asunto(s)
Proteína BRCA1/deficiencia , Neoplasias de la Mama/enzimología , Replicación del ADN , ADN de Neoplasias/biosíntesis , Proteasas Ubiquitina-Específicas/metabolismo , Neoplasias del Cuello Uterino/enzimología , Animales , Proteína BRCA1/genética , Sitios de Unión , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Supervivencia Celular , ADN de Neoplasias/genética , Resistencia a Medicamentos , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Ratones Desnudos , Mutación , Desnaturalización de Ácido Nucleico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Nucleic Acids Res ; 46(8): 3891-3905, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29529298

RESUMEN

CHD1 is a conserved chromatin remodeling enzyme required for development and linked to prostate cancer in adults, yet its role in human cells is poorly understood. Here, we show that targeted disruption of the CHD1 gene in human cells leads to a defect in early double-strand break (DSB) repair via homologous recombination (HR), resulting in hypersensitivity to ionizing radiation as well as PARP and PTEN inhibition. CHD1 knockout cells show reduced H2AX phosphorylation (γH2AX) and foci formation as well as impairments in CtIP recruitment to the damaged sites. Chromatin immunoprecipitation following a single DSB shows that the reduced levels of γH2AX accumulation at DSBs in CHD1-KO cells are due to both a global reduction in H2AX incorporation and poor retention of H2AX at the DSBs. We also identified a unique N-terminal region of CHD1 that inhibits the DNA binding, ATPase, and chromatin assembly and remodeling activities of CHD1. CHD1 lacking the N terminus was more active in rescuing the defects in γH2AX formation and CtIP recruitment in CHD1-KO cells than full-length CHD1, suggesting the N terminus is a negative regulator in cells. Our data point to a role for CHD1 in the DSB repair process and identify a novel regulatory region of the protein.


Asunto(s)
Daño del ADN , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Línea Celular , Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas , Técnicas de Inactivación de Genes , Histonas/metabolismo , Recombinación Homóloga , Humanos , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
3.
Cell Rep ; 20(9): 2044-2056, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28854357

RESUMEN

Oxidative damage to telomere DNA compromises telomere integrity. We recently reported that the DNA glycosylase NEIL3 preferentially repairs oxidative lesions in telomere sequences in vitro. Here, we show that loss of NEIL3 causes anaphase DNA bridging because of telomere dysfunction. NEIL3 expression increases during S phase and reaches maximal levels in late S/G2. NEIL3 co-localizes with TRF2 and associates with telomeres during S phase, and this association increases upon oxidative stress. Mechanistic studies reveal that NEIL3 binds to single-stranded DNA via its intrinsically disordered C terminus in a telomere-sequence-independent manner. Moreover, NEIL3 is recruited to telomeres through its interaction with TRF1, and this interaction enhances the enzymatic activity of purified NEIL3. Finally, we show that NEIL3 interacts with AP Endonuclease 1 (APE1) and the long-patch base excision repair proteins PCNA and FEN1. Taken together, we propose that NEIL3 protects genome stability through targeted repair of oxidative damage in telomeres during S/G2 phase.


Asunto(s)
Segregación Cromosómica , Daño del ADN , Reparación del ADN , Mitosis , N-Glicosil Hidrolasas/metabolismo , Fase S , Telómero/patología , Linfocitos T CD4-Positivos/metabolismo , Puntos de Control del Ciclo Celular , Núcleo Celular/metabolismo , ADN/metabolismo , Técnicas de Silenciamiento del Gen , Células HCT116 , Células HeLa , Humanos , Microtúbulos/metabolismo , N-Glicosil Hidrolasas/química , Estrés Oxidativo , Unión Proteica , Dominios Proteicos , Huso Acromático/metabolismo
4.
Sci Transl Med ; 9(389)2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28490664

RESUMEN

Multiple myeloma (MM) is a frequently incurable hematological cancer in which overactivity of MYC plays a central role, notably through up-regulation of ribosome biogenesis and translation. To better understand the oncogenic program driven by MYC and investigate its potential as a therapeutic target, we screened a chemically diverse small-molecule library for anti-MM activity. The most potent hits identified were rocaglate scaffold inhibitors of translation initiation. Expression profiling of MM cells revealed reversion of the oncogenic MYC-driven transcriptional program by CMLD010509, the most promising rocaglate. Proteome-wide reversion correlated with selective depletion of short-lived proteins that are key to MM growth and survival, most notably MYC, MDM2, CCND1, MAF, and MCL-1. The efficacy of CMLD010509 in mouse models of MM confirmed the therapeutic relevance of these findings in vivo and supports the feasibility of targeting the oncogenic MYC-driven translation program in MM with rocaglates.


Asunto(s)
Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Animales , Línea Celular Tumoral , Ciclina D1/genética , Humanos , Ratones , Proteínas Proto-Oncogénicas c-maf/genética , Proteínas Proto-Oncogénicas c-myc/genética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Biol Chem ; 292(28): 11927-11936, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28533432

RESUMEN

Proper chromatin regulation is central to genome function and maintenance. The group III chromodomain-helicase-DNA-binding (CHD) family of ATP-dependent chromatin remodeling enzymes, comprising CHD6, CHD7, CHD8, and CHD9, has well-documented roles in transcription regulation, impacting both organism development and disease etiology. These four enzymes are similar in their constituent domains, but they fill surprisingly non-redundant roles in the cell, with deficiencies in individual enzymes leading to dissimilar disease states such as CHARGE syndrome or autism spectrum disorders. The mechanisms explaining their divergent, non-overlapping functions are unclear. In this study, we performed an in-depth biochemical analysis of purified CHD6, CHD7, and CHD8 and discovered distinct differences in chromatin remodeling specificities and activities among them. We report that CHD6 and CHD7 both bind with high affinity to short linker DNA, whereas CHD8 requires longer DNA for binding. As a result, CHD8 slides nucleosomes into positions with more flanking linker DNA than CHD7. Moreover, we found that, although CHD7 and CHD8 slide nucleosomes, CHD6 disrupts nucleosomes in a distinct non-sliding manner. The different activities of these enzymes likely lead to differences in chromatin structure and, thereby, transcriptional control, at the enhancer and promoter loci where these enzymes bind. Overall, our work provides a mechanistic basis for both the non-redundant roles and the diverse mutant disease states of these enzymes in vivo.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nucleosomas/enzimología , Factores de Transcripción/metabolismo , Animales , Transporte Biológico , ADN/química , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/aislamiento & purificación , ADN Recombinante/química , ADN Recombinante/metabolismo , ADN Viral/química , ADN Viral/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Células HeLa , Humanos , Hidrólisis , Cinética , Peso Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/aislamiento & purificación , Nucleosomas/metabolismo , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación
6.
Nucleic Acids Res ; 45(8): 4687-4695, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28334870

RESUMEN

We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing action of HARP on a physiologically relevant substrate. We find that HARP closes RPA-stabilized bubbles in a slow reaction, taking on the order of tens of minutes for ∼600 bp of DNA to be re-annealed. The data indicate that DNA re-anneals through the removal of RPA, which is observed as clear steps in the bubble-closing traces. The dependence of the closing rate on both ionic strength and HARP concentration indicates that removal of RPA occurs via an association-dissociation mechanism where HARP does not remain associated with the DNA. The enzyme exhibits classical Michaelis-Menten kinetics and acts cooperatively with a Hill coefficient of 3 ± 1. Our work also allows the determination of some important features of RPA-bubble structures at low supercoiling, including the existence of multiple bubbles and that RPA molecules are mis-registered on the two strands.


Asunto(s)
ADN Helicasas/química , ADN Superhelicoidal/química , Proteína de Replicación A/química , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Fenómenos Biomecánicos , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , Humanos , Cinética , Campos Magnéticos , Pinzas Ópticas , Concentración Osmolar , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicación A/metabolismo
7.
Nature ; 518(7538): 258-62, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25642963

RESUMEN

Large-scale genomic studies have shown that half of epithelial ovarian cancers (EOCs) have alterations in genes regulating homologous recombination (HR) repair. Loss of HR accounts for the genomic instability of EOCs and for their cellular hyper-dependence on alternative poly-ADP ribose polymerase (PARP)-mediated DNA repair mechanisms. Previous studies have implicated the DNA polymerase θ (Polθ also known as POLQ, encoded by POLQ) in a pathway required for the repair of DNA double-strand breaks, referred to as the error-prone microhomology-mediated end-joining (MMEJ) pathway. Whether Polθ interacts with canonical DNA repair pathways to prevent genomic instability remains unknown. Here we report an inverse correlation between HR activity and Polθ expression in EOCs. Knockdown of Polθ in HR-proficient cells upregulates HR activity and RAD51 nucleofilament assembly, while knockdown of Polθ in HR-deficient EOCs enhances cell death. Consistent with these results, genetic inactivation of an HR gene (Fancd2) and Polq in mice results in embryonic lethality. Moreover, Polθ contains RAD51 binding motifs and it blocks RAD51-mediated recombination. Our results reveal a synthetic lethal relationship between the HR pathway and Polθ-mediated repair in EOCs, and identify Polθ as a novel druggable target for cancer therapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Polimerasa Dirigida por ADN/metabolismo , Recombinación Homóloga , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Secuencias de Aminoácidos , Animales , Carcinoma Epitelial de Ovario , Ciclo Celular , Muerte Celular , Línea Celular Tumoral , Reparación del ADN por Unión de Extremidades/genética , Replicación del ADN , ADN Polimerasa Dirigida por ADN/deficiencia , Pérdida del Embrión , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Femenino , Inestabilidad Genómica , Recombinación Homóloga/genética , Humanos , Ratones , Terapia Molecular Dirigida , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , Unión Proteica , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación/genética , ADN Polimerasa theta
8.
J Biol Chem ; 290(1): 25-34, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25384982

RESUMEN

Chromodomain helicase DNA-binding protein 2 (CHD2) is an ATPase and a member of the SNF2-like family of helicase-related enzymes. Although deletions of CHD2 have been linked to developmental defects in mice and epileptic disorders in humans, little is known about its biochemical and cellular activities. In this study, we investigate the ATP-dependent activity of CHD2 and show that CHD2 catalyzes the assembly of chromatin into periodic arrays. We also show that the N-terminal region of CHD2, which contains tandem chromodomains, serves an auto-inhibitory role in both the DNA-binding and ATPase activities of CHD2. While loss of the N-terminal region leads to enhanced chromatin-stimulated ATPase activity, the N-terminal region is required for ATP-dependent chromatin remodeling by CHD2. In contrast, the C-terminal region, which contains a putative DNA-binding domain, selectively senses double-stranded DNA of at least 40 base pairs in length and enhances the ATPase and chromatin remodeling activities of CHD2. Our study shows that the accessory domains of CHD2 play central roles in both regulating the ATPase domain and conferring selectivity to chromatin substrates.


Asunto(s)
Adenosina Trifosfatasas/genética , Ensamble y Desensamble de Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Histonas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Sitios de Unión , Cromatina/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Histonas/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Células Sf9 , Spodoptera
9.
PLoS One ; 9(9): e108066, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25247294

RESUMEN

Loss of the chromatin remodeling ATPase CHD5 has been linked to the progression of neuroblastoma tumors, yet the underlying mechanisms behind the tumor suppressor role of CHD5 are unknown. In this study, we purified the human CHD5 complex and found that CHD5 is a component of the full NuRD transcriptional repressor complex, which also contains methyl-CpG binding proteins and histone deacetylases. The CHD5/NuRD complex appears mutually exclusive with the related CHD4/NuRD complex as overexpression of CHD5 results in loss of the CHD4 protein in cells. Following a search for genes that are regulated by CHD5 in neuroblastoma cells, we found that CHD5 binds to and represses the G2/M checkpoint gene WEE1. Reintroduction of CHD5 into neuroblastoma cells represses WEE1 expression, demonstrating that CHD5 can function as a repressor in cells. A catalytically inactive mutant version of CHD5 is able to associate with a NuRD cofactor but fails to repress transcription. Our study shows that CHD5 is a NuRD-associated transcriptional repressor and identifies WEE1 as one of the CHD5-regulated genes that may link CHD5 to tumor suppression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Oxidorreductasas de Alcohol , Cadherinas/metabolismo , Dominio Catalítico , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Datos de Secuencia Molecular , Mutación , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Tirosina Quinasas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética
10.
J Biol Chem ; 289(30): 20717-26, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24923445

RESUMEN

Although mutations or deletions of chromodomain helicase DNA-binding protein 5 (CHD5) have been linked to cancer and implicate CHD5 in tumor suppression, the ATP-dependent activity of CHD5 is currently unknown. In this study, we discovered that CHD5 is a chromatin remodeling factor with a unique enzymatic activity. CHD5 can expose nucleosomal DNA at one or two discrete positions in the nucleosome. The exposure of the nucleosomal DNA by CHD5 is dependent on ATP hydrolysis, but continued ATP hydrolysis is not required to maintain the nucleosomes in their remodeled state. The activity of CHD5 is distinct from other related chromatin remodeling ATPases, such as ACF and BRG1, and does not lead to complete disruption or destabilization of the nucleosome. Rather, CHD5 likely initiates remodeling in a manner similar to that of other remodeling factors but does not significantly reposition the nucleosome. While the related factor CHD4 shows strong ATPase activity, it does not unwrap nucleosomes as efficiently as CHD5. Our findings add to the growing evidence that chromatin remodeling ATPases have diverse roles in modulating chromatin structure.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , ADN Helicasas/metabolismo , ADN/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nucleosomas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Cadherinas/química , Cadherinas/genética , Cadherinas/metabolismo , ADN/química , ADN/genética , ADN Helicasas/química , ADN Helicasas/genética , Drosophila melanogaster , Humanos , Hidrólisis , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Nucleosomas/química , Nucleosomas/genética , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
11.
Epigenetics ; 9(5): 693-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24565939

RESUMEN

The HepA-related protein (HARP/SMARCAL1) is an ATP-dependent annealing helicase that is capable of rewinding DNA structures that are stably unwound due to binding of the single-stranded DNA (ssDNA)-binding protein Replication Protein A (RPA). HARP has been implicated in maintaining genome integrity through its role in DNA replication and repair, two processes that generate RPA-coated ssDNA. In addition, mutations in HARP cause a rare disease known as Schimke immuno-osseous dysplasia. In this study, we purified HARP containing complexes with the goal of identifying the predominant factors that stably associate with HARP. We found that HARP preferentially interacts with RPA molecules that are bound to the DNA-dependent protein kinase (DNA-PK). We also found that RPA is phosphorylated by DNA-PK in vitro, while the RPA-HARP complexes are not. Our results suggest that, in addition to its annealing helicase activity, which eliminates the natural binding substrate for RPA, HARP blocks the phosphorylation of RPA by DNA-PK.


Asunto(s)
ADN Helicasas/aislamiento & purificación , Proteína Quinasa Activada por ADN/aislamiento & purificación , Proteínas Nucleares/aislamiento & purificación , Proteína de Replicación A/aislamiento & purificación , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fosforilación , Proteína de Replicación A/metabolismo
12.
J Biol Chem ; 288(10): 7096-104, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23349465

RESUMEN

MeCP2 is an abundant methyl-cytosine-guanine (CG)-binding protein and transcriptional repressor. We developed a biochemical system that exhibits CG methylation-specific transcriptional repression by purified human MeCP2. MeCP2 represses transcription by histone deacetylase (HDAC)-dependent and HDAC-independent mechanisms. Our system appears to recreate the HDAC-independent component of MeCP2-mediated repression and occurs via inhibition of the assembly of transcription preinitiation complexes. At a ratio of approximately one molecule of MeCP2 per two methyl-CG dinucleotides, as found in mammalian neurons, the magnitude of methylation-specific repression was greater than 10-fold. Notably, the HDAC inhibitor trichostatin A had no effect on MeCP2-mediated repression with either naked DNA or chromatin templates. We designed a CG-deficient core promoter that is resistant to MeCP2-mediated repression when placed in a plasmid lacking CG dinucleotides. By using this CG-deficient reporter as a reference, we found that eight CG dinucleotides in the core promoter region are sufficient for strong methylation-specific repression by MeCP2. In contrast, MeCP2 does not repress a construct with 13 CG dinucleotides located ∼1.7 kbp upstream of the promoter. Furthermore, by analysis of C-terminally truncated MeCP2 proteins, we found that binding of MeCP2 to methyl-CG dinucleotides is not sufficient for transcriptional repression. Hence, MeCP2-mediated repression is not due to the simple steric blockage of the transcriptional machinery. These experiments suggest that MeCP2 can function as a global methyl-CG-specific, HDAC-independent repressor. This HDAC-independent mechanism of MeCP2-mediated repression may be important in cells, such as mammalian neurons, that have high levels of CG methylation and MeCP2.


Asunto(s)
Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Transcripción Genética/genética , Cromatina/genética , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , Metilación de ADN , Fosfatos de Dinucleósidos/genética , Ensayo de Cambio de Movilidad Electroforética , Células HeLa , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Proteína 2 de Unión a Metil-CpG/genética , Mutación , Regiones Promotoras Genéticas/genética , Unión Proteica , Iniciación de la Transcripción Genética/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
13.
Rare Dis ; 1: e24735, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25002993
14.
Curr Opin Genet Dev ; 21(2): 214-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21324673

RESUMEN

The proper resolution of branched DNA molecules, which arise during processes such as DNA replication, DNA repair, and transcription, is critical for the maintenance of the genome. Disruption of this process can lead to genome instability and cancer progression. In this review, we describe recent progress on several interesting and biologically important enzymes that act upon different types of branched DNA substrates.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN/metabolismo , Animales , Reparación del ADN , Humanos , Especificidad por Sustrato
15.
Proc Natl Acad Sci U S A ; 107(49): 20970-3, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21078962

RESUMEN

The structure and integrity of DNA is of considerable biological and biomedical importance, and it is therefore critical to identify and to characterize enzymes that alter DNA structure. DNA helicases are ATP-driven motor proteins that unwind DNA. Conversely, HepA-related protein (HARP) protein (also known as SMARCAL1 and DNA-dependent ATPase A) is an annealing helicase that rewinds DNA in an ATP-dependent manner. To date, HARP is the only known annealing helicase. Here we report the identification of a second annealing helicase, which we term AH2, for annealing helicase 2. Like HARP, AH2 catalyzes the ATP-dependent rewinding of replication protein A (RPA)-bound complementary single-stranded DNA, but does not exhibit any detectable helicase activity. Unlike HARP, however, AH2 lacks a conserved RPA-binding domain and does not interact with RPA. In addition, AH2 contains an HNH motif, which is commonly found in bacteria and fungi and is often associated with nuclease activity. AH2 appears to be the only vertebrate protein with an HNH motif. Contrary to expectations, purified AH2 does not exhibit nuclease activity, but it remains possible that AH2 contains a latent nuclease that is activated under specific conditions. These structural and functional differences between AH2 and HARP suggest that different annealing helicases have distinct functions in the cell.


Asunto(s)
ADN Helicasas/fisiología , Secuencias de Aminoácidos , Catálisis , ADN Helicasas/química , ADN de Cadena Simple/metabolismo , Endonucleasas , Humanos , Proteínas Motoras Moleculares , Unión Proteica , Proteína de Replicación A/metabolismo
16.
Genes Dev ; 23(20): 2400-4, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19793863

RESUMEN

HepA-related protein (HARP) (also known as SMARCAL1) is an ATP-driven annealing helicase that catalyzes the formation of dsDNA from complementary Replication protein A (RPA)-bound ssDNA. Here we find that HARP contains a conserved N-terminal motif that is necessary and sufficient for binding to RPA. This RPA-binding motif is not required for annealing helicase activity, but is essential for the recruitment of HARP to sites of laser-induced DNA damage. These findings suggest that the interaction of HARP with RPA increases the concentration of annealing helicase activity in the vicinity of ssDNA regions to facilitate processes such as DNA repair.


Asunto(s)
ADN Helicasas/metabolismo , Reparación del ADN/fisiología , Proteína de Replicación A/metabolismo , Secuencias de Aminoácidos , Animales , Daño del ADN , ADN Helicasas/química , Células HeLa , Humanos , Ratones , Unión Proteica , Estabilidad Proteica
17.
Mol Cell ; 34(5): 620-6, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19524541

RESUMEN

The high-mobility group N (HMGN) proteins are abundant nonhistone chromosomal proteins that bind specifically to nucleosomes at two high-affinity sites. Here we report that purified recombinant human HMGN1 (HMG14) and HMGN2 (HMG17) potently repress ATP-dependent chromatin remodeling by four different molecular motor proteins. In contrast, mutant HMGN proteins with double Ser-to-Glu mutations in their nucleosome-binding domains are unable to inhibit chromatin remodeling. The HMGN-mediated repression of chromatin remodeling is reversible and dynamic. With the ACF chromatin remodeling factor, HMGN2 does not directly inhibit the ATPase activity but rather appears to reduce the affinity of the factor to chromatin. These findings suggest that HMGN proteins serve as a counterbalance to the action of the many ATP-dependent chromatin remodeling activities in the nucleus.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Proteína HMGN1/fisiología , Proteína HMGN2/fisiología , Nucleosomas/metabolismo , Proteínas Recombinantes/metabolismo , Adenosina Trifosfato/metabolismo , Cromatina/metabolismo , ADN Helicasas/metabolismo , Proteína HMGN1/genética , Proteína HMGN1/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Humanos , Proteínas Motoras Moleculares/fisiología , Mutación , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
18.
Science ; 322(5902): 748-50, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18974355

RESUMEN

DNA-dependent adenosine triphosphatases (ATPases) participate in a broad range of biological processes including transcription, DNA repair, and chromatin dynamics. Mutations in the HepA-related protein (HARP) ATPase are responsible for Schimke immuno-osseous dysplasia (SIOD), but the function of the protein is unknown. We found that HARP is an ATP-dependent annealing helicase that rewinds single-stranded DNA bubbles that are stably bound by replication protein A. Other related ATPases, including the DNA translocase Rad54, did not exhibit annealing helicase activity. Analysis of mutant HARP proteins suggests that SIOD is caused by a deficiency in annealing helicase activity. Moreover, the pleiotropy of HARP mutations is consistent with the function of HARP as an annealing helicase that acts throughout the genome to oppose the action of DNA-unwinding activities in the nucleus.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , ADN Helicasas/química , ADN Helicasas/deficiencia , ADN Helicasas/genética , ADN de Cadena Simple/química , Proteínas de Unión al ADN , Humanos , Síndromes de Inmunodeficiencia/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Osteocondrodisplasias/genética , Proteína de Replicación A/metabolismo , Síndrome
19.
Mol Cell Biol ; 27(22): 7991-8002, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17846119

RESUMEN

The insulator element at the 5' end of the chicken beta-globin locus acts as a barrier, protecting transgenes against silencing effects of adjacent heterochromatin. We showed earlier that the transcription factor USF1 binds within the insulator and that this site is important for generating in adjacent nucleosomes histone modifications associated with active chromatin and, by inference, with barrier function. To understand the mechanism of USF1 action, we have characterized USF1-containing complexes. USF1 interacts directly with the histone H4R3-specific methyltransferase PRMT1. USF1, PRMT1, and the histone acetyltransferases (HATs) PCAF and SRC-1 form a complex with both H4R3 histone methyltransferase and HAT activities. Small interfering RNA downregulation of USF1 results in localized loss of H4R3 methylation, and other histone modifications associated with euchromatin, at the insulator. A dominant negative peptide that interferes with USF1 binding to DNA causes silencing of an insulated reporter construct, indicating abolition of barrier function. These results show that USF1 plays a direct role in maintaining the barrier, supporting a model in which the insulator works as a barrier by maintaining a local environment of active chromatin.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Factores de Transcripción/metabolismo , Factores Estimuladores hacia 5'/metabolismo , Animales , Línea Celular , Pollos , Cromatina/química , Eritrocitos/química , Eritrocitos/metabolismo , Silenciador del Gen , Histonas/química , Conformación de Ácido Nucleico , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/genética , Factores Estimuladores hacia 5'/genética , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
20.
Proc Natl Acad Sci U S A ; 101(23): 8620-4, 2004 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-15169959

RESUMEN

The protein CTCF plays an essential role in the action of a widely distributed class of vertebrate enhancer-blocking insulators, of which the first example was found in a DNA sequence element, HS4, at the 5' end of the chicken beta-globin locus. HS4 contains a binding site for CTCF that is necessary and sufficient for insulator action. Purification of CTCF has revealed that it interacts with proteins involved in subnuclear architecture, notably nucleophosmin, a 38-kDa nucleolar phosphoprotein that is concentrated in nuclear matrix preparations. In this report we show that both CTCF and the HS4 insulator element are incorporated in the matrix; HS4 incorporation depends on the presence of an intact CTCF-binding site. However the DNA sequence in the neighborhood of HS4 is not like that of canonical matrix attachment regions, and its incorporation into the matrix fraction is not sensitive to ribonuclease, suggesting that the insulator is a distinct matrix-associated element.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/genética , ADN/metabolismo , Globinas/genética , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Factor de Unión a CCCTC , Pollos , Eritrocitos/metabolismo , Técnicas In Vitro , Región de Control de Posición , Datos de Secuencia Molecular , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Nucleoplasminas , Fosfoproteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...