Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(16)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796604

RESUMEN

Advancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance. Here, we present an extensive review and critical analysis of various materials applied in the design and fabrication of wearable sensors. In our unique transdisciplinary approach, we studied the fundamentals of blood pressure and examined its measuring modalities while focusing on their clinical use and sensing principles to identify material functionalities. Then, we carefully reviewed various categories of functional materials utilized in sensor building blocks allowing for comparative analysis of the performance of a wide range of materials throughout the sensor operational-life cycle. Not only this provides essential data to enhance the materials' properties and optimize their performance, but also, it highlights new perspectives and provides suggestions to develop the next generation pressure sensors for clinical use.


Asunto(s)
Presión Sanguínea , Monitoreo Fisiológico , Dispositivos Electrónicos Vestibles
2.
Sensors (Basel) ; 20(12)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575656

RESUMEN

Pneumonia is a virulent disease that causes the death of millions of people around the world. Every year it kills more children than malaria, AIDS, and measles combined and it accounts for approximately one in five child-deaths worldwide. The invention of antibiotics and vaccines in the past century has notably increased the survival rate of Pneumonia patients. Currently, the primary challenge is to detect the disease at an early stage and determine its type to initiate the appropriate treatment. Usually, a trained physician or a radiologist undertakes the task of diagnosing Pneumonia by examining the patient's chest X-ray. However, the number of such trained individuals is nominal when compared to the 450 million people who get affected by Pneumonia every year. Fortunately, this challenge can be met by introducing modern computers and improved Machine Learning techniques in Pneumonia diagnosis. Researchers have been trying to develop a method to automatically detect Pneumonia using machines by analyzing and the symptoms of the disease and chest radiographic images of the patients for the past two decades. However, with the development of cogent Deep Learning algorithms, the formation of such an automatic system is very much within the realms of possibility. In this paper, a novel diagnostic method has been proposed while using Image Processing and Deep Learning techniques that are based on chest X-ray images to detect Pneumonia. The method has been tested on a widely used chest radiography dataset, and the obtained results indicate that the model is very much potent to be employed in an automatic Pneumonia diagnosis scheme.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Neumonía , Niño , Humanos , Neumonía/diagnóstico por imagen , Radiografía , Radiografía Torácica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...