Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.873
Filtrar
1.
J Environ Sci (China) ; 149: 57-67, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181668

RESUMEN

Size-fractionated particulate matter (PM2.5 and PM>2.5) was collected at a traffic site in Kanazawa, Japan in a seasonal sampling work in 2020. Nine polycyclic aromatic hydrocarbons (4- to 6-ring PAHs) were determined in fine and coarse particles. The gas/particle partitioning coefficients (Kp) of the PAHs were calculated from the supercooled liquid vapour pressure and octanol-air partitioning coefficient based on the relationships obtained in previous traffic pollution-related studies. Gaseous PAHs were estimated by Kp and the concentrations of PM and particulate PAHs. The concentrations of total PAHs were 32.5, 320.1 and 5646.2 pg/m3 in the PM>2.5, PM2.5 and gas phases, respectively. Significant seasonal trends in PAHs were observed (particle phase: lowest in summer, gas phase: lowest in spring, particle and gas phase: lowest in spring). Compared to 2019, the total PAH concentrations (in particles) decreased in 2020, especially in spring and summer, which might be due to reduced traffic trips during the COVID-19 outbreak. The incremental lifetime cancer risk (ILCR) calculated from the toxic equivalent concentrations relative to benzo[a]pyrene (BaPeq) was lower than the acceptable limit issued by the US Environmental Protection Agency, indicating a low cancer risk in long-term exposure to current PAH levels. It is notable that gaseous PAHs considerably contributed to BaPeq and ILCR (over 50%), which highlighted the significance of gaseous PAH monitoring for public health protection. This low-cost estimation method for gaseous PAHs can be expected to reliably and conveniently obtain PAH concentrations as a surrogate for traditional sampling in the future work.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Material Particulado , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , Japón , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Emisiones de Vehículos/análisis , Estaciones del Año
2.
Food Chem ; 462: 140994, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208729

RESUMEN

The quality of meat in prepared dishes deteriorates due to excessive protein denaturation resulting from precooking, freezing, and recooking. This study aimed to link the precooked state with chicken breast's recooked quality. Cooked Value (CV), based on protein denaturation kinetics, was established to indicate the doneness of meat during pre-heating. The effects of CVs after pre-heating on recooked qualities were investigated compared to fully pre-heated samples (control). Mild pre-heating reduced water migration and loss. While full pre-heating inhibited protein oxidation during freezing, intense oxidation during pre-heating led to higher oxidation levels. Surface hydrophobicity analysis revealed that mild pre-heating suppressed aggregation during recooking. These factors contributed to a better texture and microstructure of prepared meat with mild pre-heating. Finally, a potential mechanism of how pre-heating affects final qualities was depicted. This study underlines the need for finely controlling the industrial precooking process to regulate the quality of prepared meat.


Asunto(s)
Pollos , Culinaria , Calor , Carne , Oxidación-Reducción , Desnaturalización Proteica , Agua , Animales , Cinética , Carne/análisis , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas
3.
Food Chem ; 462: 141011, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226643

RESUMEN

Chlorogenic acid (CGA) is a well-known plant secondary metabolite exhibiting multiple physiological functions. The present study focused on screening for synergistic antibacterial combinations containing CGA. The combination of CGA and p-coumaric acid (pCA) exhibited remarkably enhanced antibacterial activity compared to that when administering the treatment only. Scanning electron microscopy revealed that a low-dose combination treatment could disrupt the Shigella dysenteriae cell membrane. A comprehensive analysis using nucleic acid and protein leakage assay, conductivity measurements, and biofilm formation inhibition experiments revealed that co-treatment increased the cell permeability and inhibited the biofilm formation substantially. Further, the polyacrylamide protein- and agarose gel-electrophoresis indicated that the proteins and DNA genome of Shigella dysenteriae severely degraded. Finally, the synergistic bactericidal effect was established for fresh-cut tomato preservation. This study demonstrates the remarkable potential of strategically selecting antibacterial agents with maximum synergistic effect and minimum dosage exhibiting excellent antibacterial activity in food preservation.


Asunto(s)
Antibacterianos , Ácido Clorogénico , Ácidos Cumáricos , Sinergismo Farmacológico , Shigella dysenteriae , Antibacterianos/farmacología , Antibacterianos/química , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Shigella dysenteriae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos , Propionatos/farmacología , Solanum lycopersicum/química , Solanum lycopersicum/microbiología , Conservación de Alimentos/métodos
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125010, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39216368

RESUMEN

Lithium, a rare metal of strategic importance, has garnered heightened global attention. This investigation delves into the laboratory visible-near infrared and short-wavelength infrared reflectance (VNIR-SWIR 350 nm-2500 nm) spectral properties of lithium-rich rocks and stream sediments, aiming to elucidate their quantitative relationship with lithium concentration. This research seeks to pave new avenues and furnish innovative technical solutions for probing sedimentary lithium reserves. Conducted in the Tuanjie Peak region of Western Kunlun, Xinjiang, China, this study analyzed 614 stream sediments and 222 rock specimens. Initial steps included laboratory VNIR-SWIR spectral reflectance measurements and lithium quantification. Following the preprocessing of spectral data via Savitzky-Golay (SG) smoothing and continuum removal (CR), the absorption positions (Pos2210nm, Pos1910nm) and depths (Depth2210, Depth1910) in the rock spectra, as well as the Illite Spectral Maturity (ISM) of the rock samples, were extracted. Employing both the Successive Projections Algorithm (SPA) and genetic algorithm (GA), wavelengths indicative of lithium content were identified. Integrating the lithium-sensitive wavelengths identified by these feature selection methods, A quantitative predictive regression model for lithium content in rock and stream sediments was developed using partial least squares regression (PLSR), support vector regression (SVR), and convolutional neural network (CNN). Spectral analysis indicated that lithium is predominantly found in montmorillonite and illite, with its content positively correlating with the spectral maturity of illite and closely related to Al-OH absorption depth (Depth2210) and clay content. The SPA algorithm was more effective than GA in extracting lithium-sensitive bands. The optimal regression model for quantitative prediction of lithium content in rock samples was SG-SPA-CNN, with a correlation coefficient prediction (Rp) of 0.924 and root-mean-square error prediction (RMSEP) of 0.112. The optimal model for the prediction of lithium content in stream sediment was SG-SPA-CNN, with an Rp and RMSEP of 0.881 and 0.296, respectively. The higher prediction accuracy for lithium content in rocks compared to sediments indicates that rocks are a more suitable medium for predicting lithium content. Compared to the PLSR and SVR models, the CNN model performs better in both sample types. Despite the limitations, this study highlights the effectiveness of hyperspectral technology in exploring the potential of clay-type lithium resources in the Tuanjie Peak area, offering new perspectives and approaches for further exploration.

5.
J Inflamm (Lond) ; 21(1): 34, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227870

RESUMEN

BACKGROUND: Sonic Hedgehog (Shh), extensively researched for its role in early neurogenesis and brain development, has recently been recognized for its neuroprotective potential following neuronal injuries. This study examines the immediate impact of early administered Shh on the local inflammatory response post-acute spinal cord injury in rats. METHODS: Thirty-four female Wistar rats underwent either sham surgery (laminectomy; n = 10) or clip compression/contusion spinal cord injury (SCI) at the T9 level. This was followed by implantation of an osmotic pump and a subdural catheter for continuous intrathecal delivery of Shh (n = 12) or placebo (NaCl; n = 12). Locomotor function was assessed at 3- and 7-days post-injury (dpi) using the Basso, Beattie, and Bresnahan (BBB) score and the Gridwalk test. Animals were euthanized after 3 or 7 days for immunohistochemical analysis of the local inflammatory reaction and immune cell migration. RESULTS: Shh-treated rats demonstrated significant hindlimb movement and coordination improvements at 7 days post-injury, compared to controls. This enhancement was accompanied by a significant reduction in both immune cell presence and blood plasma products within spinal cord lesions, suggesting Shh's dual role in modulating immune cell migration and maintaining the integrity of the blood-spinal cord barrier. Separately, these Shh-treated rats also showed an increase in M(IL-4) polarization of macrophages, further underlining the potential therapeutic impact of Shh in post-injury recovery. Notably, these effects were not evident at three days post-injury. CONCLUSION: Shh application at 7 days post-injury showed immunomodulatory effects, possibly via enhanced blood-spinal cord barrier integrity, reduced immune cell migration, and increased anti-inflammatory immune cell differentiation. These mechanisms collectively contribute to enhanced locomotor recovery.

6.
J Colloid Interface Sci ; 678(Pt B): 20-29, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39236351

RESUMEN

The off-stoichiometric compound Na3.12Fe2.44(P2O7)2 (NFPO) is a highly promising, cost-effective, and structurally robust cathode material for sodium-ion batteries (SIBs). However, the slowing Na-ion migration kinetics and poor interface stability have seriously limited its rate capability and air stability. In this work, we successfully synthesis a sodium titanium pyrophosphate (NaTiP2O7 donated as NTPO) coating NFPO (denoted as NFPO-NTPO) cathode material via a liquid phase coating method for SIBs. After optimizing NTPO content, at 0.1C, NFPO-NTPO-4 % cathode achieves a reversible specific capacity of 108.4 mAh g-1. Remarkably, it maintains 88.39 % capacity at 10C comparing to 0.1C and stabilizes over 3000 cycles with 92.66 % retention rate. Moreover, it retains 88.89 % capacity after 5000 cycles at 20C, even after 28 days of air exposure. The NFPO-Ti cathode, alongside the complete battery system, exhibits remarkable electrochemical performance across a broad temperature range spanning from -40 to 60 ℃.

7.
Med Image Anal ; 99: 103331, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39243598

RESUMEN

Multi-modal Magnetic Resonance Imaging (MRI) offers complementary diagnostic information, but some modalities are limited by the long scanning time. To accelerate the whole acquisition process, MRI reconstruction of one modality from highly under-sampled k-space data with another fully-sampled reference modality is an efficient solution. However, the misalignment between modalities, which is common in clinic practice, can negatively affect reconstruction quality. Existing deep learning-based methods that account for inter-modality misalignment perform better, but still share two main common limitations: (1) The spatial alignment task is not adaptively integrated with the reconstruction process, resulting in insufficient complementarity between the two tasks; (2) the entire framework has weak interpretability. In this paper, we construct a novel Deep Unfolding Network with Spatial Alignment, termed DUN-SA, to appropriately embed the spatial alignment task into the reconstruction process. Concretely, we derive a novel joint alignment-reconstruction model with a specially designed aligned cross-modal prior term. By relaxing the model into cross-modal spatial alignment and multi-modal reconstruction tasks, we propose an effective algorithm to solve this model alternatively. Then, we unfold the iterative stages of the proposed algorithm and design corresponding network modules to build DUN-SA with interpretability. Through end-to-end training, we effectively compensate for spatial misalignment using only reconstruction loss, and utilize the progressively aligned reference modality to provide inter-modality prior to improve the reconstruction of the target modality. Comprehensive experiments on four real datasets demonstrate that our method exhibits superior reconstruction performance compared to state-of-the-art methods.

8.
HIV Med ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252604

RESUMEN

BACKGROUND: People with HIV might be at an increased risk of long COVID (LC) because of their immune dysfunction and chronic inflammation and alterations in immunological responses against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; coronavirus disease 2019 [COVID-19]). This systematic review aimed to evaluate the association between HIV infection and LC and the prevalence and characteristics of and risk factors for LC among people with HIV. METHODS: Multiple databases, including Embase, PubMed, PsycINFO, Web of Science, and Sociological Abstracts, were searched to identify articles published before June 2023. Published articles were included if they presented at least one LC outcome measure among people with HIV and used quantitative or mixed-methods study designs. For effects reported in three or more studies, meta-analyses using random-effects models were performed using R software. RESULTS: We pooled 39 405 people with HIV and COVID-19 in 17 eligible studies out of 6158 publications in all the databases. It was estimated that 52% of people with HIV with SARS-CoV-2 infection developed at least one LC symptom. Results from the random-effects model showed that HIV infection was associated with an increased risk of LC (odds ratio 2.20; 95% confidence interval 1.25-3.86). The most common LC symptoms among people with HIV were cough, fatigue, and asthenia. Risk factors associated with LC among people with HIV included a history of moderate-severe COVID-19 illness, increased interferon-gamma-induced protein 10 or tumour necrosis factor-α, and decreased interferon-ß, among others. CONCLUSIONS: The COVID-19 pandemic continues to exacerbate health inequities among people with HIV because of their higher risk of developing LC. Our review is informative for public health and clinical communities to develop tailored strategies to prevent aggravated LC among people with HIV.

9.
Vet Parasitol ; 331: 110296, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217762

RESUMEN

Coccidiosis is an important parasitic disease that has serious adverse effects on the global poultry industry. The mechanism by which the pathogenic factors of Eimeria tenella damage host cells is unknown. Some kinases from the rhoptry compartment can regulate apoptosis of host cells. This study focused on revealing the role and critical nodes of E. tenella rhoptry protein (EtROP) 38 in controlling the apoptosis of host cells via the P38 mitogen-activated protein kinase (MAPK) signaling pathway. The cells were treated with EtROP38 protein, siRNA p38MAPK, or both. The rate of infection, apoptosis, and the dynamic changes in the expression and activation of key factor genes of the P38MAPK signaling pathway in host cells infected with E. tenella were measured. The results showed that the addition of EtROP38 and/or knockdown of the host cells p38 gene reduced the apoptosis rate of cecal epithelial cells (CECS), decreased the mRNA expressions of p38, p53, c-myc, c-fos, and c-jun and increased the expression of p65, decreased the protein expressions of c-myc, c-fos, and c-jun, decreased the p38 protein phosphorylation level, and increased the p65 protein phosphorylation level in CECS. When E. tenella was inoculated for 4-96 h, the addition of Et ROP38 and/or host cell p38 knockdown both increased the infection rate of host cells, and this effect was more pronounced with the addition of EtROP38 with the host cell p38 knockdown. These observations indicate that E. tenella can inhibits the activation of the p38MAPK signaling pathway in host cells via EtROP38, which suppresses apoptosis in host cells.


Asunto(s)
Apoptosis , Pollos , Eimeria tenella , Proteínas Quinasas p38 Activadas por Mitógenos , Eimeria tenella/fisiología , Animales , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Enfermedades de las Aves de Corral/parasitología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Coccidiosis/parasitología , Coccidiosis/veterinaria , Sistema de Señalización de MAP Quinasas , Células Epiteliales/parasitología , Ciego/parasitología , Transducción de Señal
10.
Biomed Pharmacother ; 179: 117413, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260325

RESUMEN

The epidermal growth factor receptor (EGFR) plays a pivotal role in tumor progression and is an essential therapeutic target for treating malignant gliomas. Small interfering RNA (siRNA) has the potential to selectively degrade EGFR mRNA, yet its clinical utilization is impeded by various challenges, such as inefficient targeting and limited escape from lysosomes. Our research introduces polyethylene glycol (PEG) and endoplasmic reticulum membrane-coated siEGFR nanoplexes (PEhCv/siEGFR NPs) as an innovative approach to brain glioma therapy by overcoming several obstacles: 1) Tumor-derived endoplasmic reticulum membrane modifications provide a homing effect, facilitating targeted accumulation and cellular uptake; 2) Endoplasmic reticulum membrane proteins mediate a non-degradable "endosome-Golgi-endoplasmic reticulum" transport pathway, circumventing lysosomal degradation. These nanoplexes demonstrated significantly enhanced siEGFR gene silencing in both in vitro and in vivo U87 glioma models. The findings of this study pave the way for the advanced design and effective application of nucleic acid-based therapeutic nanocarriers.

11.
Science ; 385(6714): 1205-1210, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39265019

RESUMEN

Traditional electromagnetic interference-shielding materials are predominantly electrically conductive, posing short-circuit risks when applied in highly integrated electronics. To overcome this dilemma, we propose a microcapacitor-structure model comprising conductive fillers as polar plates and intermediate polymer as a dielectric layer to develop insulating electromagnetic interference-shielding polymer composites. The electron oscillation in plates and dipole polarization in dielectric layers contribute to the reflection and absorption of electromagnetic waves. Guided by this, the synergistic nonpercolation densification and dielectric enhancement enable our composite to combine high resistivity, shielding performance, and thermal conductivity. Its insulating feature allows for direct potting into the crevices among assembled components to address electromagnetic compatibility and heat-accumulation issues.

12.
Anal Chem ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265084

RESUMEN

Increasing efforts have been made to develop proteins in circulating extracellular vesicles (EVs) as potential disease markers. It is in particular intriguing to measure post-translational modifications (PTMs) such as phosphorylation, preserved and stable in EVs. To facilitate the quantitative measurement of EV protein phosphorylation for potential clinical use, a label-free (LF) multiple reaction monitoring (MRM) strategy is introduced by utilizing a synthetic phosphopeptide set (phos-iRT) as the internal standards and a local normalization method. The quantitation method was investigated in terms of its linear dynamic range, sensitivity, accuracy, precision, and matrix effect, with a dynamic range spanning from 10 to 1000 ng/mL and an accuracy ranging from 82.4 to 116.8% for EV samples. Then, the LF-MRM-based local normalization method was utilized to evaluate and optimize our recently developed EVTOP method for the enrichment of phosphopeptides from EVs. Finally, we applied the optimized EV enrichment approach and the LF-MRM-based local normalization method to quantify phosphopeptides in urine EVs from patients with prostate cancer (PCa) and healthy individuals, showcasing the strategy's superiority in quantifying phosphopeptides without isotopic internal standards and validating that the method is generally applicable in MRM-based EV phosphopeptide quantification.

14.
Commun Biol ; 7(1): 1106, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251752

RESUMEN

Otopetrin 1 (OTOP1) is a proton-activated channel crucial for animals' perception of sour taste. Despite its significance, the gating mechanism of OTOP1 remains poorly understood. Here, we demonstrate that carvacrol activates the mouse OTOP1 (mOTOP1) channel under neutral and acidic conditions. Functional analysis showed that carvacrol enhances pH fluorescence signals in OTOP1-expressing cells, with reduced efficacy at lower pH levels. Carvacrol selectively activates mOTOP1, while mOTOP2, mOTOP3, and Chelonia mydas OTOP1 (CmOTOP1) are insensitive to carvacrol activation under neutral pH. Through chimera and point mutation experiments, swapping S134 in transmembrane segment 3 (TM3) and T247 in the TM5-6 linker abolished carvacrol activation of mOTOP1 and conferred activation on CmOTOP1, suggesting these two residues are critical for carvacrol sensitivity. These findings highlight TM3 and TM5-6 linker as pivotal gating apparatus of OTOP1 channels and potential docking sites for drug design.


Asunto(s)
Cimenos , Cimenos/farmacología , Animales , Ratones , Activación del Canal Iónico/efectos de los fármacos , Humanos , Células HEK293 , Concentración de Iones de Hidrógeno , Canales Iónicos/metabolismo , Canales Iónicos/genética
15.
Biochem Pharmacol ; 229: 116518, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236933

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, including hyperglycemia, hepatic steatosis, and insulin resistance. Piperlongumine (PL), a natural amide alkaloid extracted from the fruits of Piper longum L., exhibited hepatoprotective effects in zebrafish and liver injury mice. This study aimed to investigate the therapeutic potential of PL on MAFLD and its underlying mechanisms. The findings demonstrate that PL effectively combats MAFLD induced by a high-fat diet (HFD) and improves metabolic characteristics in mice. Additionally, our results suggest that the anti-MAFLD effect of PL is attributed to the suppression of excessive hepatic gluconeogenesis, inhibition of de novo lipogenesis, and alleviation of insulin resistance. Importantly, the results indicate that, on the one hand, the hypoglycemic effect of PL is closely associated with CREB-regulated transcriptional coactivators (CRTC2)-dependent cyclic AMP response element binding protein (CREB) phosphorylation; on the other hand, the lipid-lowering effect of PL is attributed to reducing the nuclear localization of sterol regulatory element-binding proteins 1c (Srebp-1c). Mechanistically, PL could alleviate insulin resistance induced by endoplasmic reticulum stress by antagonizing the thromboxane A2 receptor (TP)/Ca2+ signaling, and the TP receptor serves as the potential target for PL in the treatment of MAFLD. Therefore, our results suggested PL effectively improved the major hallmarks of MAFLD induced by HFD, highlighting a potential therapeutic strategy for MAFLD.

16.
J Control Release ; 375: 47-59, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39222794

RESUMEN

In the prodrug-based self-assembled nanoassemblies, prodrugs usually consist of drug modules, response modules, and modification modules. Modification modules play a critical role in regulating the nano-assembly ability of the prodrugs. Herein, we carried out a "fatty alcoholization" strategy and chose various lengths of aliphatic alcohol chains (AC) as modification modules to construct disulfide bond bridged paclitaxel (PTX) prodrug nanoassemblies. The PTX-AC prodrugs would self-assemble into nanoassemblies (PTX-AC PNs) with higher drug loading, stability, and tumor selectivity than commercial preparations. After comprehensive exploration, we found the chain length (AC12, AC16, AC20, AC24) of modification modules affected the assembly of PTX-AC PNs, further leading to disparate in vivo fate and antitumor efficacy. With the increase of the chain length of the modification modules (from AC12 to AC20), the assembly ability of the nanoassemblies was improved, attributed to the appropriate enhancement of hydrophobic force. When the chain length was further increased to AC24, the excessive hydrophobic force will lead to the aggregation of prodrugs and weaken the assembly ability. Therefore, PTX-AC20 PNs with proper chain length may solve the paradox of efficacy and tolerance in 4 T1 breast tumor owing to their optimal nano-assembly stability and modest redox-sensitivity. In short, this work highlighted the importance of screening optimal modification modules in developing prodrug nanoassemblies.

17.
Microsyst Nanoeng ; 10(1): 128, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39261463

RESUMEN

Wearable ultrasound imaging technology has become an emerging modality for the continuous monitoring of deep-tissue physiology, providing crucial health and disease information. Fast volumetric imaging that can provide a full spatiotemporal view of intrinsic 3D targets is desirable for interpreting internal organ dynamics. However, existing 1D ultrasound transducer arrays provide 2D images, making it challenging to overcome the trade-off between the temporal resolution and volumetric coverage. In addition, the high driving voltage limits their implementation in wearable settings. With the use of microelectromechanical system (MEMS) technology, we report an ultrasonic phased-array transducer, i.e., a 2D piezoelectric micromachined ultrasound transducer (pMUT) array, which is driven by a low voltage and is chip-compatible for fast 3D volumetric imaging. By grouping multiple pMUT cells into one single drive channel/element, we propose an innovative cell-element-array design and operation of a pMUT array that can be used to quantitatively characterize the key coupling effects between each pMUT cell, allowing 3D imaging with 5-V actuation. The pMUT array demonstrates fast volumetric imaging covering a range of 40 mm × 40 mm × 70 mm in wire phantom and vascular phantom experiments, achieving a high temporal frame rate of 11 kHz. The proposed solution offers a full volumetric view of deep-tissue disorders in a fast manner, paving the way for long-term wearable imaging technology for various organs in deep tissues.

18.
Natl Sci Rev ; 11(9): nwae297, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39262403
19.
Am J Transl Res ; 16(8): 3472-3479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39262705

RESUMEN

Glial fibrillary acidic protein (GFAP) is a marker associated with astrocyte activation and plays a role in various pathologic processes, including traumatic brain injury, stroke, and neurodegenerative diseases. Interacting boson approximation (Iba-1) is a marker protein for microglia, which are important in neuroinflammatory responses. This meta-analysis aimed to investigate the impact of general anesthetics on the expression of GFAP and Iba-1 in animal models. A meta-analysis was conducted using databases such as PubMed, EMBASE, Springer, and Web of Science. The quality of the selected publications was estimated using the SYRCLE guidelines to ensure credibility and consistency of the research. Continuous variables were measured using mean difference or standardized mean difference (SMD), with a 95% confidence interval (CI) calculated. Ten randomized controlled animal experiments were included in this analysis, utilizing different general anesthetics such as sevoflurane and propofol compared to untreated control groups. The results consistently demonstrated a significant increase in GFAP (SMD = 0.41, 95% CI: 0.09, 0.72, P = 0.01) and Iba-1 (SMD = 0.43, 95% CI: 0.04, 0.83, P = 0.03) expression in the general anesthetic-treated groups, suggesting a neuroinflammatory response induced by these agents. Assessment of publication bias revealed no significant bias in the included studies. This meta-analysis highlights the impact of general anesthetics on GFAP expression in animal models, emphasizing the importance of understanding the neuroinflammatory response associated with anesthesia administration. Further research is warranted to elucidate the underlying molecular pathways and explore possible therapeutic interventions to mitigate adverse effects associated with anesthesia administration.

20.
J Agric Food Chem ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39279192

RESUMEN

The probiotic properties of Lactobacillus reuteri (L. reuteri) and its impact on immune function are well-documented. Lipoteichoic acid (LTA) is a crucial immune molecule in Gram-positive bacteria. Despite extensive research on LTA's structural diversity, the immunomodulatory mechanisms of L. reuteri LTA remain largely unexplored. This study investigates the immunomodulatory effects of L. reuteri L1 LTA at various concentrations on RAW 264.7 cells and mice under normal and inflammatory conditions. We found that LTA does not significantly affect healthy subjects; however, low-concentration LTA can reduce inflammation induced by LPS in cells and mice, enhancing the abundance of dominant intestinal bacteria. In contrast, high-concentration LTA exacerbates intestinal damage and dysbiosis. Creatinine may play a role in this differential response. In summary, while LTA does not alter immune homeostasis in healthy organisms, low-concentration LTA may mitigate damage from immune imbalance, but high-concentration LTA can worsen it. This suggests a quantitative requirement for probiotic intake. Our study provides critical theoretical support for understanding the immunomodulatory effects of probiotics on the host and paves the way for future research into the immune mechanisms of probiotics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...