Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiome ; 12(1): 159, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39198891

RESUMEN

BACKGROUND: Prokaryotic microbes have impacted marine biogeochemical cycles for billions of years. Viruses also impact these cycles, through lysis, horizontal gene transfer, and encoding and expressing genes that contribute to metabolic reprogramming of prokaryotic cells. While this impact is difficult to quantify in nature, we hypothesized that it can be examined by surveying virus-encoded auxiliary metabolic genes (AMGs) and assessing their ecological context. RESULTS: We systematically developed a global ocean AMG catalog by integrating previously described and newly identified AMGs and then placed this catalog into ecological and metabolic contexts relevant to ocean biogeochemistry. From 7.6 terabases of Tara Oceans paired prokaryote- and virus-enriched metagenomic sequence data, we increased known ocean virus populations to 579,904 (up 16%). From these virus populations, we then conservatively identified 86,913 AMGs that grouped into 22,779 sequence-based gene clusters, 7248 (~ 32%) of which were not previously reported. Using our catalog and modeled data from mock communities, we estimate that ~ 19% of ocean virus populations carry at least one AMG. To understand AMGs in their metabolic context, we identified 340 metabolic pathways encoded by ocean microbes and showed that AMGs map to 128 of them. Furthermore, we identified metabolic "hot spots" targeted by virus AMGs, including nine pathways where most steps (≥ 0.75) were AMG-targeted (involved in carbohydrate, amino acid, fatty acid, and nucleotide metabolism), as well as other pathways where virus-encoded AMGs outnumbered cellular homologs (involved in lipid A phosphates, phosphatidylethanolamine, creatine biosynthesis, phosphoribosylamine-glycine ligase, and carbamoyl-phosphate synthase pathways). CONCLUSIONS: Together, this systematically curated, global ocean AMG catalog and analyses provide a valuable resource and foundational observations to understand the role of viruses in modulating global ocean metabolisms and their biogeochemical implications. Video Abstract.


Asunto(s)
Océanos y Mares , Agua de Mar , Agua de Mar/virología , Agua de Mar/microbiología , Metagenómica , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Células Procariotas/metabolismo , Células Procariotas/virología , Metagenoma , Redes y Vías Metabólicas/genética , Transferencia de Gen Horizontal , Fosfatidiletanolaminas/metabolismo
2.
Nat Microbiol ; 9(5): 1340-1355, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605174

RESUMEN

Although the significance of chemical modifications on RNA is acknowledged, the evolutionary benefits and specific roles in human immunodeficiency virus (HIV-1) replication remain elusive. Most studies have provided only population-averaged values of modifications for fragmented RNAs at low resolution and have relied on indirect analyses of phenotypic effects by perturbing host effectors. Here we analysed chemical modifications on HIV-1 RNAs at the full-length, single RNA level and nucleotide resolution using direct RNA sequencing methods. Our data reveal an unexpectedly simple HIV-1 modification landscape, highlighting three predominant N6-methyladenosine (m6A) modifications near the 3' end. More densely installed in spliced viral messenger RNAs than in genomic RNAs, these m6As play a crucial role in maintaining normal levels of HIV-1 RNA splicing and translation. HIV-1 generates diverse RNA subspecies with distinct m6A ensembles, and maintaining multiple of these m6As on its RNAs provides additional stability and resilience to HIV-1 replication, suggesting an unexplored viral RNA-level evolutionary strategy.


Asunto(s)
Adenosina , VIH-1 , ARN Viral , Replicación Viral , VIH-1/genética , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Replicación Viral/genética , Empalme del ARN , Análisis de Secuencia de ARN/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Infecciones por VIH/virología , Transcriptoma
3.
Microbiome ; 11(1): 174, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550784

RESUMEN

BACKGROUND: Climate change threatens Earth's ice-based ecosystems which currently offer archives and eco-evolutionary experiments in the extreme. Arctic cryopeg brine (marine-derived, within permafrost) and sea ice brine, similar in subzero temperature and high salinity but different in temporal stability, are inhabited by microbes adapted to these extreme conditions. However, little is known about their viruses (community composition, diversity, interaction with hosts, or evolution) or how they might respond to geologically stable cryopeg versus fluctuating sea ice conditions. RESULTS: We used long- and short-read viromics and metatranscriptomics to study viruses in Arctic cryopeg brine, sea ice brine, and underlying seawater, recovering 11,088 vOTUs (~species-level taxonomic unit), a 4.4-fold increase of known viruses in these brines. More specifically, the long-read-powered viromes doubled the number of longer (≥25 kb) vOTUs generated and recovered more hypervariable regions by >5-fold compared to short-read viromes. Distribution assessment, by comparing to known viruses in public databases, supported that cryopeg brine viruses were of marine origin yet distinct from either sea ice brine or seawater viruses, while 94% of sea ice brine viruses were also present in seawater. A virus-encoded, ecologically important exopolysaccharide biosynthesis gene was identified, and many viruses (~half of metatranscriptome-inferred "active" vOTUs) were predicted as actively infecting the dominant microbial genera Marinobacter and Polaribacter in cryopeg and sea ice brines, respectively. Evolutionarily, microdiversity (intra-species genetic variations) analyses suggested that viruses within the stable cryopeg brine were under significantly lower evolutionary pressures than those in the fluctuating sea ice environment, while many sea ice brine virus-tail genes were under positive selection, indicating virus-host co-evolutionary arms races. CONCLUSIONS: Our results confirmed the benefits of long-read-powered viromics in understanding the environmental virosphere through significantly improved genomic recovery, expanding viral discovery and the potential for biological inference. Evidence of viruses actively infecting the dominant microbes in subzero brines and modulating host metabolism underscored the potential impact of viruses on these remote and underexplored extreme ecosystems. Microdiversity results shed light on different strategies viruses use to evolve and adapt when extreme conditions are stable versus fluctuating. Together, these findings verify the value of long-read-powered viromics and provide foundational data on viral evolution and virus-microbe interactions in Earth's destabilized and rapidly disappearing cryosphere. Video Abstract.


Asunto(s)
Ecosistema , Virus , Regiones Árticas , Agua de Mar , Sales (Química) , Virus/genética
4.
mSystems ; 7(6): e0041722, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36300946

RESUMEN

The growth and physiology of soil microorganisms, which play vital roles in biogeochemical cycling, are shaped by both current and historical soil environmental conditions. Here, we developed and applied a genome-resolved metagenomic implementation of quantitative stable isotope probing (qSIP) with an H218O labeling experiment to identify actively growing soil microorganisms and their genomic capacities. qSIP enabled measurement of taxon-specific growth because isotopic incorporation into microbial DNA requires production of new genome copies. We studied three Mediterranean grassland soils across a rainfall gradient to evaluate the hypothesis that historic precipitation levels are an important factor controlling trait selection. We used qSIP-informed genome-resolved metagenomics to resolve the active subset of soil community members and identify their characteristic ecophysiological traits. Higher year-round precipitation levels correlated with higher activity and growth rates of flagellar motile microorganisms. In addition to heavily isotopically labeled bacteria, we identified abundant isotope-labeled phages, suggesting phage-induced cell lysis likely contributed to necromass production at all three sites. Further, there was a positive correlation between phage activity and the activity of putative phage hosts. Contrary to our expectations, the capacity to decompose the diverse complex carbohydrates common in soil organic matter or oxidize methanol and carbon monoxide were broadly distributed across active and inactive bacteria in all three soils, implying that these traits are not highly selected for by historical precipitation. IMPORTANCE Soil moisture is a critical factor that strongly shapes the lifestyle of soil organisms by changing access to nutrients, controlling oxygen diffusion, and regulating the potential for mobility. We identified active microorganisms in three grassland soils with similar mineral contexts, yet different historic rainfall inputs, by adding water labeled with a stable isotope and tracking that isotope in DNA of growing microbes. By examining the genomes of active and inactive microorganisms, we identified functions that are enriched in growing organisms, and showed that different functions were selected for in different soils. Wetter soil had higher activity of motile organisms, but activity of pathways for degradation of soil organic carbon compounds, including simple carbon substrates, were comparable for all three soils. We identified many labeled, and thus active bacteriophages (viruses that infect bacteria), implying that the cells they killed contributed to soil organic matter. The activity of these bacteriophages was significantly correlated with activity of their hosts.


Asunto(s)
Ecosistema , Microbiología del Suelo , Pradera , Suelo/química , Carbono/metabolismo , Bacterias/genética , Isótopos/metabolismo , ADN/metabolismo
5.
Science ; 376(6598): 1202-1208, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679415

RESUMEN

DNA viruses are increasingly recognized as influencing marine microbes and microbe-mediated biogeochemical cycling. However, little is known about global marine RNA virus diversity, ecology, and ecosystem roles. In this study, we uncover patterns and predictors of marine RNA virus community- and "species"-level diversity and contextualize their ecological impacts from pole to pole. Our analyses revealed four ecological zones, latitudinal and depth diversity patterns, and environmental correlates for RNA viruses. Our findings only partially parallel those of cosampled plankton and show unexpectedly high polar ecological interactions. The influence of RNA viruses on ecosystems appears to be large, as predicted hosts are ecologically important. Moreover, the occurrence of auxiliary metabolic genes indicates that RNA viruses cause reprogramming of diverse host metabolisms, including photosynthesis and carbon cycling, and that RNA virus abundances predict ocean carbon export.


Asunto(s)
Plancton , Virus ARN , Agua de Mar , Viroma , Ciclo del Carbono , Ecosistema , Océanos y Mares , Plancton/clasificación , Plancton/metabolismo , Plancton/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , Agua de Mar/virología , Viroma/genética
6.
Science ; 376(6589): 156-162, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35389782

RESUMEN

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.


Asunto(s)
Genoma Viral , Virus ARN , Virus , Evolución Biológica , Ecosistema , Océanos y Mares , Filogenia , ARN , Virus ARN/genética , Viroma/genética , Virus/genética
7.
Nat Rev Microbiol ; 20(7): 415-430, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35228712

RESUMEN

Soil microorganisms shape global element cycles in life and death. Living soil microorganisms are a major engine of terrestrial biogeochemistry, driving the turnover of soil organic matter - Earth's largest terrestrial carbon pool and the primary source of plant nutrients. Their metabolic functions are influenced by ecological interactions with other soil microbial populations, soil fauna and plants, and the surrounding soil environment. Remnants of dead microbial cells serve as fuel for these biogeochemical engines because their chemical constituents persist as soil organic matter. This non-living microbial biomass accretes over time in soil, forming one of the largest pools of organic matter on the planet. In this Review, we discuss how the biogeochemical cycling of organic matter depends on both living and dead soil microorganisms, their functional traits, and their interactions with the soil matrix and other organisms. With recent omics advances, many of the traits that frame microbial population dynamics and their ecophysiological adaptations can be deciphered directly from assembled genomes or patterns of gene or protein expression. Thus, it is now possible to leverage a trait-based understanding of microbial life and death within improved biogeochemical models and to better predict ecosystem functioning under new climate regimes.


Asunto(s)
Microbiota , Suelo , Biomasa , Carbono/metabolismo , Ecosistema , Plantas/metabolismo , Microbiología del Suelo
8.
ISME Commun ; 2(1): 12, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938680

RESUMEN

Viral metagenomics (viromics) has reshaped our understanding of DNA viral diversity, ecology, and evolution across Earth's ecosystems. However, viromics now needs approaches to link newly discovered viruses to their host cells and characterize them at scale. This study adapts one such method, sequencing-enabled viral tagging (VT), to establish "Viral Tag and Grow" (VT + Grow) to rapidly capture and characterize viruses that infect a cultivated target bacterium, Pseudoalteromonas. First, baseline cytometric and microscopy data improved understanding of how infection conditions and host physiology impact populations in VT flow cytograms. Next, we extensively evaluated "and grow" capability to assess where VT signals reflect adsorption alone or wholly successful infections that lead to lysis. Third, we applied VT + Grow to a clonal virus stock, which, coupled to traditional plaque assays, revealed significant variability in burst size-findings that hint at a viral "individuality" parallel to the microbial phenotypic heterogeneity literature. Finally, we established a live protocol for public comment and improvement via protocols.io to maximally empower the research community. Together these efforts provide a robust foundation for VT researchers, and establish VT + Grow as a promising scalable technology to capture and characterize viruses from mixed community source samples that infect cultivable bacteria.

9.
PeerJ ; 9: e11088, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33850654

RESUMEN

Microbes play fundamental roles in shaping natural ecosystem properties and functions, but do so under constraints imposed by their viral predators. However, studying viruses in nature can be challenging due to low biomass and the lack of universal gene markers. Though metagenomic short-read sequencing has greatly improved our virus ecology toolkit-and revealed many critical ecosystem roles for viruses-microdiverse populations and fine-scale genomic traits are missed. Some of these microdiverse populations are abundant and the missed regions may be of interest for identifying selection pressures that underpin evolutionary constraints associated with hosts and environments. Though long-read sequencing promises complete virus genomes on single reads, it currently suffers from high DNA requirements and sequencing errors that limit accurate gene prediction. Here we introduce VirION2, an integrated short- and long-read metagenomic wet-lab and informatics pipeline that updates our previous method (VirION) to further enhance the utility of long-read viral metagenomics. Using a viral mock community, we first optimized laboratory protocols (polymerase choice, DNA shearing size, PCR cycling) to enable 76% longer reads (now median length of 6,965 bp) from 100-fold less input DNA (now 1 nanogram). Using a virome from a natural seawater sample, we compared viromes generated with VirION2 against other library preparation options (unamplified, original VirION, and short-read), and optimized downstream informatics for improved long-read error correction and assembly. VirION2 assemblies combined with short-read based data ('enhanced' viromes), provided significant improvements over VirION libraries in the recovery of longer and more complete viral genomes, and our optimized error-correction strategy using long- and short-read data achieved 99.97% accuracy. In the seawater virome, VirION2 assemblies captured 5,161 viral populations (including all of the virus populations observed in the other assemblies), 30% of which were uniquely assembled through inclusion of long-reads, and 22% of the top 10% most abundant virus populations derived from assembly of long-reads. Viral populations unique to VirION2 assemblies had significantly higher microdiversity means, which may explain why short-read virome approaches failed to capture them. These findings suggest the VirION2 sample prep and workflow can help researchers better investigate the virosphere, even from challenging low-biomass samples. Our new protocols are available to the research community on protocols.io as a 'living document' to facilitate dissemination of updates to keep pace with the rapid evolution of long-read sequencing technology.

10.
Nat Microbiol ; 6(5): 630-642, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33633401

RESUMEN

Viruses impact microbial diversity, gene flow and function through virus-host interactions. Although metagenomics surveys are rapidly cataloguing viral diversity, methods are needed to capture specific virus-host interactions in situ. Here, we leveraged metagenomics and repurposed emulsion paired isolation-concatenation PCR (epicPCR) to investigate viral diversity and virus-host interactions in situ over time in an estuarine environment. The method fuses a phage marker, the ribonucleotide reductase gene, with the host 16S rRNA gene of infected bacterial cells within emulsion droplets providing single-cell resolution for dozens of samples. EpicPCR captured in situ virus-host interactions for viral clades with no closely related database representatives. Abundant freshwater Actinobacteria lineages, in particular Rhodoluna sp., were the most common hosts for these poorly characterized viruses, with interactions correlated with environmental factors. Multiple methods used to identify virus-host interactions, including epicPCR, identified different and largely non-overlapping interactions within the vast virus-host interaction space. Tracking virus-host interaction dynamics also revealed that multi-host viruses had significantly longer periods with observed virus-host interactions, whereas single-host viruses were observed interacting with hosts at lower minimum abundances, suggesting more efficient interactions. Capturing in situ interactions with epicPCR revealed environmental and ecological factors shaping virus-host interactions, highlighting epicPCR as a valuable technique in viral ecology.


Asunto(s)
Bacterias/virología , Bacteriófagos/fisiología , Reacción en Cadena de la Polimerasa/métodos , Fenómenos Fisiológicos de los Virus , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Bacteriófagos/genética , Agua Dulce/microbiología , Agua Dulce/virología , Especificidad del Huésped , Interacciones Huésped-Patógeno
11.
ISME Commun ; 1(1): 77, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36765102

RESUMEN

Microbes drive myriad ecosystem processes, but under strong influence from viruses. Because studying viruses in complex systems requires different tools than those for microbes, they remain underexplored. To combat this, we previously aggregated double-stranded DNA (dsDNA) virus analysis capabilities and resources into 'iVirus' on the CyVerse collaborative cyberinfrastructure. Here we substantially expand iVirus's functionality and accessibility, to iVirus 2.0, as follows. First, core iVirus apps were integrated into the Department of Energy's Systems Biology KnowledgeBase (KBase) to provide an additional analytical platform. Second, at CyVerse, 20 software tools (apps) were upgraded or added as new tools and capabilities. Third, nearly 20-fold more sequence reads were aggregated to capture new data and environments. Finally, documentation, as "live" protocols, was updated to maximize user interaction with and contribution to infrastructure development. Together, iVirus 2.0 serves as a uniquely central and accessible analytical platform for studying how viruses, particularly dsDNA viruses, impact diverse microbial ecosystems.

12.
Cell Host Microbe ; 28(5): 724-740.e8, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-32841606

RESUMEN

The gut microbiome profoundly affects human health and disease, and their infecting viruses are likely as important, but often missed because of reference database limitations. Here, we (1) built a human Gut Virome Database (GVD) from 2,697 viral particle or microbial metagenomes from 1,986 individuals representing 16 countries, (2) assess its effectiveness, and (3) report a meta-analysis that reveals age-dependent patterns across healthy Westerners. The GVD contains 33,242 unique viral populations (approximately species-level taxa) and improves average viral detection rates over viral RefSeq and IMG/VR nearly 182-fold and 2.6-fold, respectively. GVD meta-analyses show highly personalized viromes, reveal that inter-study variability from technical artifacts is larger than any "disease" effect at the population level, and document how viral diversity changes from human infancy into senescence. Together, this compact foundational resource, these standardization guidelines, and these meta-analysis findings provide a systematic toolkit to help maximize our understanding of viral roles in health and disease.


Asunto(s)
Tracto Gastrointestinal/virología , Viroma , Bacteriófagos , Bases de Datos Factuales , Disbiosis/virología , Heces/virología , Genoma Viral , Humanos , Longevidad , Metagenoma , Virión , Virosis/virología
13.
Nat Biotechnol ; 37(6): 632-639, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061483

RESUMEN

Microbiomes from every environment contain a myriad of uncultivated archaeal and bacterial viruses, but studying these viruses is hampered by the lack of a universal, scalable taxonomic framework. We present vConTACT v.2.0, a network-based application utilizing whole genome gene-sharing profiles for virus taxonomy that integrates distance-based hierarchical clustering and confidence scores for all taxonomic predictions. We report near-identical (96%) replication of existing genus-level viral taxonomy assignments from the International Committee on Taxonomy of Viruses for National Center for Biotechnology Information virus RefSeq. Application of vConTACT v.2.0 to 1,364 previously unclassified viruses deposited in virus RefSeq as reference genomes produced automatic, high-confidence genus assignments for 820 of the 1,364. We applied vConTACT v.2.0 to analyze 15,280 Global Ocean Virome genome fragments and were able to provide taxonomic assignments for 31% of these data, which shows that our algorithm is scalable to very large metagenomic datasets. Our taxonomy tool can be automated and applied to metagenomes from any environment for virus classification.


Asunto(s)
Redes Reguladoras de Genes/genética , Genoma Viral/genética , Metagenómica , Virus/genética , Bacteriófagos/genética , Clasificación , Metagenoma/genética , Filogenia , Células Procariotas/virología , Virus/clasificación
14.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31076430

RESUMEN

Soils contain a tangle of minerals, water, nutrients, gases, plant roots, decaying organic matter, and microorganisms which work together to cycle nutrients and support terrestrial plant growth. Most soil microorganisms live in periodically interconnected communities closely associated with soil aggregates, i.e., small (<2 mm), strongly bound clusters of minerals and organic carbon that persist through mechanical disruptions and wetting events. Their spatial structure is important for biogeochemical cycling, and we cannot reliably predict soil biological activities and variability by studying bulk soils alone. To fully understand the biogeochemical processes at work in soils, it is necessary to understand the micrometer-scale interactions that occur between soil particles and their microbial inhabitants. Here, we review the current state of knowledge regarding soil aggregate microbial communities and identify areas of opportunity to study soil ecosystems at a scale relevant to individual cells. We present a framework for understanding aggregate communities as "microbial villages" that are periodically connected through wetting events, allowing for the transfer of genetic material, metabolites, and viruses. We describe both top-down (whole community) and bottom-up (reductionist) strategies for studying these communities. Understanding this requires combining "model system" approaches (e.g., developing mock community artificial aggregates), field observations of natural communities, and broader study of community interactions to include understudied community members, like viruses. Initial studies suggest that aggregate-based approaches are a critical next step for developing a predictive understanding of how geochemical and community interactions govern microbial community structure and nutrient cycling in soil.


Asunto(s)
Microbiota/fisiología , Microbiología del Suelo , Ecosistema , Suelo
15.
Extremophiles ; 22(6): 827-837, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30121708

RESUMEN

Bacterial viruses ("phages") play important roles in the regulation and evolution of microbial communities in most ecosystems. Terrestrial hot springs typically contain thermophilic bacterial communities, but the diversity and impacts of its associated viruses ("thermophilic phages") are largely unexplored. Here, we provide a taxonomic overview of phages that have been isolated strictly from terrestrial hot springs around the world. In addition, we placed 17 thermophilic phage genomes in a global phylogenomic context to detect evolutionary patterns. Thermophilic phages have diverse morphologies (e.g., tailed, filamentous), unique virion structures (e.g., extremely long tailed siphoviruses), and span five taxonomic families encompassing strictly thermophilic phage genera. Within the phage proteomic tree, six thermophilic phage-related clades were identified, with evident genomic relatedness between thermophilic phages and archaeal viruses. Moreover, whole proteome analyses showed clustering between phages that infect distinct host phyla, such as Firmicutes and Deinococcus-Thermus. The potential for discovery of novel phage-host systems in terrestrial hot springs remain mostly untapped, thus additional emphasis on thermophilic phages in ecological prospecting is encouraged to gain insights into the microbial population dynamics of these environments.


Asunto(s)
Bacteriófagos/genética , Manantiales de Aguas Termales/virología , Filogenia , Bacteriófagos/clasificación , Genoma Viral , Metagenoma , Filogeografía
16.
17.
Microb Ecol ; 75(1): 193-203, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28647755

RESUMEN

The hyperarid Namib desert is a coastal desert in southwestern Africa and one of the oldest and driest deserts on the planet. It is characterized by a west/east increasing precipitation gradient and by regular coastal fog events (extending up to 75 km inland) that can also provide soil moisture. In this study, we evaluated the role of this natural aridity and xeric gradient on edaphic microbial community structure and function in the Namib desert. A total of 80 individual soil samples were collected at 10-km intervals along a 190-km transect from the fog-dominated western coastal region to the eastern desert boundary. Seventeen physicochemical parameters were measured for each soil sample. Soil parameters reflected the three a priori defined climatic/xeric zones along the transect ("fog," "low rain," and "high rain"). Microbial community structures were characterized by terminal restriction fragment length polymorphism fingerprinting and shotgun metaviromics, and their functional capacities were determined by extracellular enzyme activity assays. Both microbial community structures and activities differed significantly between the three xeric zones. The deep sequencing of surface soil metavirome libraries also showed shifts in viral composition along the xeric transect. While bacterial community assembly was influenced by soil chemistry and stochasticity along the transect, variations in community "function" were apparently tuned by xeric stress.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbiota , Microbiología del Suelo , Bacterias/genética , Biodiversidad , Clima Desértico , Namibia , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , Suelo/química
18.
Viruses ; 9(11)2017 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-29156552

RESUMEN

The current view of virus diversity in terrestrial hot springs is limited to a few sampling sites. To expand our current understanding of hot spring viral community diversity, this study aimed to investigate the first African hot spring (Brandvlei hot spring; 60 °C, pH 5.7) by means of electron microscopy and sequencing of the virus fraction. Microscopy analysis revealed a mixture of regular- and 'jumbo'-sized tailed morphotypes (Caudovirales), lemon-shaped virions (Fuselloviridae-like; salterprovirus-like) and pleiomorphic virus-like particles. Metavirome analysis corroborated the presence of His1-like viruses and has expanded the current clade of salterproviruses using a polymerase B gene phylogeny. The most represented viral contig was to a cyanophage genome fragment, which may underline basic ecosystem functioning provided by these viruses. Furthermore, a putative Gemmata-related phage was assembled with high coverage, a previously undocumented phage-host association. This study demonstrated that a moderately thermophilic spring environment contained a highly novel pool of viruses and should encourage future characterization of a wider temperature range of hot springs throughout the world.


Asunto(s)
Virus ADN/genética , Variación Genética , Genoma Viral , Manantiales de Aguas Termales/virología , Archaea/virología , Virus de Archaea/genética , Bacteriófagos/genética , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Virus ADN/ultraestructura , Metagenómica/métodos , Microscopía Electrónica/métodos , Filogenia , Virión/genética
19.
Genome Announc ; 5(2)2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28082503

RESUMEN

The Namib Desert in southwest Africa is hyperarid and composed of distinct microbial communities affected by a longitudinal aridity gradient. Here, we report four soil metaviromes from the Namib Desert, assessed using deep sequencing of metavirome libraries prepared from DNA extracted from gravel plain surface soils.

20.
Appl Environ Microbiol ; 82(3): 770-7, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26590289

RESUMEN

In recent years, remarkable progress has been made in the field of virus environmental ecology. In marine ecosystems, for example, viruses are now thought to play pivotal roles in the biogeochemical cycling of nutrients and to be mediators of microbial evolution through horizontal gene transfer. The diversity and ecology of viruses in soils are poorly understood, but evidence supports the view that the diversity and ecology of viruses in soils differ substantially from those in aquatic systems. Desert biomes cover ∼ 33% of global land masses, and yet the diversity and roles of viruses in these dominant ecosystems remain poorly understood. There is evidence that hot hyperarid desert soils are characterized by high levels of bacterial lysogens and low extracellular virus counts. In contrast, cold desert soils contain high extracellular virus titers. We suggest that the prevalence of microbial biofilms in hyperarid soils, combined with extreme thermal regimens, exerts strong selection pressures on both temperate and virulent viruses. Many desert soil virus sequences show low values of identity to virus genomes in public databases, suggesting the existence of distinct and as-yet-uncharacterized soil phylogenetic lineages (e.g., cyanophages). We strongly advocate for amplification-free metavirome analyses while encouraging the classical isolation of phages from dominant and culturable microbial isolates in order to populate sequence databases. This review provides an overview of recent advances in the study of viruses in hyperarid soils and of the factors that contribute to viral abundance and diversity in hot and cold deserts and offers technical recommendations for future studies.


Asunto(s)
Bacteriófagos/fisiología , Clima Desértico , Ecosistema , Variación Genética , Microbiología del Suelo , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Genoma Viral , Filogenia , ARN Ribosómico 16S , Fenómenos Fisiológicos de los Virus , Virus/clasificación , Virus/genética , Virus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...