Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38927048

RESUMEN

Chronic myeloid leukemia (CML) is an oncological myeloproliferative disorder that accounts for 15 to 20% of all adult leukemia cases. The molecular basis of this disease lies in the formation of a chimeric oncogene BCR-ABL1. The protein product of this gene, p210 BCR-ABL1, exhibits abnormally high constitutive tyrosine kinase activity. Over recent decades, several targeted tyrosine kinase inhibitors (TKIs) directed against BCR-ABL1 have been developed and introduced into clinical practice. These inhibitors suppress BCR-ABL1 activity through various mechanisms. Furthermore, the advent of RNA interference technology has enabled the highly specific inhibition of BCR-ABL1 transcript expression using small interfering RNA (siRNA). This experimental evidence opens avenues for the development of a novel therapeutic strategy for CML, termed siRNA therapy. The review delves into molecular genetic mechanisms underlying the pathogenesis of CML, challenges in CML therapy, potential molecular targets for drug development, and the latest results from the application of siRNAs in in vitro and in vivo CML models.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Terapia Molecular Dirigida , ARN Interferente Pequeño , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/metabolismo , Animales , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN
2.
FEBS J ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825733

RESUMEN

The most extensively studied ß-d-galactosidases (EC3.2.1.23) belonging to four glycoside hydrolase (GH) families 1, 2, 35, and 42 are widely distributed among Bacteria, Archaea and Eukaryotes. Here, we report a novel GH35 family ß-galactosidase from the hyperthermophilic Thermoprotei archaeon Desulfurococcus amylolyticus (DaßGal). Unlike fungal monomeric six-domain ß-galactosidases, the DaßGal enzyme is a dimer; it has an extra jelly roll domain D7 and three composite domains (D4, D5, and D6) that are formed by the distantly located polypeptide chain regions. The enzyme possesses a high specificity for ß-d-galactopyranosides, and its distinguishing feature is the ability to cleave pNP-ß-d-fucopyranoside. DaßGal efficiently catalyzes the hydrolysis of lactose at high temperatures, remains stable and active at 65 °Ð¡, and retains activity at 95 °Ð¡ with a half-life time value equal to 73 min. These properties make archaeal DaßGal a more attractive candidate for biotechnology than the widely used fungal ß-galactosidases.

3.
Biophys Chem ; 307: 107176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219420

RESUMEN

One of the critical stages of the T-cell immune response is the dimerization of the intramembrane domains of T-cell receptors (TCR). Structural similarities between the immunosuppressive domains of viral proteins and the transmembrane domains of TCR have led several authors to hypothesize the mechanism of immune response suppression by highly pathogenic viruses: viral proteins embed themselves in the membrane and act on the intramembrane domain of the TCRalpha subunit, hindering its functional oligomerization. It has also been suggested that this mechanism is used by influenza A virus in NS1-mediated immunosuppression. We have shown that the peptide corresponding to the primary structure of the potential immunosuppressive domain of NS1 protein (G51) can reduce concanavalin A-induced proliferation of PBMC cells, as well as in vitro, G51 can affect the oligomerization of the core peptide corresponding to the intramembrane domain of TCR, using AFM and small-angle neutron scattering. The results obtained using in cellulo and in vitro model systems suggest the presence of functional interaction between the NS1 fragment and the intramembrane domain of the TCR alpha subunit. We have proposed a possible scheme for such interaction obtained by computer modeling. This suggests the existence of another NS1-mediated mechanism of immunosuppression in influenza.


Asunto(s)
Gripe Humana , Humanos , Leucocitos Mononucleares/metabolismo , Péptidos/farmacología , Inmunidad , Proteínas Virales , Receptores de Antígenos de Linfocitos T , Proteínas no Estructurales Virales/química
4.
Curr Issues Mol Biol ; 46(1): 355-366, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38248325

RESUMEN

This review examines the complex interactions between maternal influenza infection, the immune system, and the neurodevelopment of the offspring. It highlights the importance of high-quality studies to clarify the association between maternal exposure to the virus and neuropsychiatric disorders in the offspring. Additionally, it emphasizes that the development of accurate animal models is vital for studying the impact of infectious diseases during pregnancy and identifying potential therapeutic targets. By drawing attention to the complex nature of these interactions, this review underscores the need for ongoing research to improve the understanding and outcomes for pregnant women and their offspring.

5.
Biochimie ; 221: 1-12, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38215931

RESUMEN

Gene silencing through RNA interference (RNAi) is a promising therapeutic approach for a wide range of disorders, including cancer. Non-viral gene therapy, using specific siRNAs against BCR-ABL1, can be a supportive or alternative measure to traditional chronic myeloid leukemia (CML) tyrosine kinase inhibitor (TKIs) therapies, given the prevalence of clinical TKI resistance. The main challenge for such approaches remains the development of the effective delivery system for siRNA tailored to the specific disease model. The purpose of this study was to examine and compare the efficiency of endosomolytic cell penetrating peptide (CPP) EB1 and PEG2000-decorated cationic liposomes composed of polycationic lipid 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2Ð¥3) and helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) for anti-bcr-abl siRNA delivery into the K562 human CML cell line. We show that both EB1 and 2Ð¥3-DOPE-DSPE-PEG2000 (0.62 % mol.) liposomes effectively deliver siRNA into K562 cells by endocytic mechanisms, and the use of liposomes leads to more effective inhibition of expression of the targeted gene (BCR-ABL1) and cancer cell proliferation. Taken together, these findings suggest that PEG-decorated cationic liposomes mediated siRNA delivery allows an effective antisense suppression of certain oncogenes, and represents a promising new class of therapies for CML.


Asunto(s)
Péptidos de Penetración Celular , Leucemia Mielógena Crónica BCR-ABL Positiva , Liposomas , ARN Interferente Pequeño , Humanos , Liposomas/química , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/administración & dosificación , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Polietilenglicoles/química , Células K562 , Fosfatidiletanolaminas/química , Cationes/química
6.
NPJ Biofilms Microbiomes ; 9(1): 9, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854956

RESUMEN

To date, the mechanisms of biomineralization induced by bacterial cells in the context of biofilm formation remain the subject of intensive studies. In this study, we analyzed the influence of the medium components on the induction of CaCO3 precipitation by the Bacillus cereus cells and composition of the extracellular matrix (ECM) formed in the submerged culture. While the accumulation of extracellular polysaccharides and amyloids appeared to be independent of the presence of calcium and urea during the growth, the accumulation of extracellular DNA (eDNA), as well as precipitation of calcium carbonate, required the presence of both ingredients in the medium. Removal of eDNA, which was sensitive to treatment by DNase, did not affect other matrix components but resulted in disruption of cell network formation and a sixfold decrease in the precipitate yield. An experiment with a cell-free system confirmed the acceleration of mineral formation after the addition of exogenous salmon sperm DNA. The observed pathway for the formation of CaCO3 minerals in B. cereus planktonic culture included a production of exopolysaccharides and negatively charged eDNA lattice promoting local Ca2+ supersaturation, which, together with an increase in the concentration of carbonate ions due to pH rise, resulted in the formation of an insoluble precipitate of calcium carbonate. Precipitation of amorphous CaCO3 on eDNA matrix was followed by crystal formation via the ACC-vaterite-calcite/aragonite pathway and further formation of larger mineral aggregates in complex with extracellular polymeric substances. Taken together, our data showed that DNA in extracellular matrix is an essential factor for triggering the biomineralization in B. cereus planktonic culture.


Asunto(s)
Bacillus cereus , Semen , Masculino , Humanos , Bacillus cereus/genética , Biopelículas , Carbonato de Calcio , ADN
7.
Vaccines (Basel) ; 10(12)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36560509

RESUMEN

Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum vaccines. Recombinant proteins incorporating conserved influenza A virus peptides are one of the platforms for the development of cross-protective influenza vaccines. We constructed a recombinant protein Flg-HA2-2-4M2ehs, in which the extracellular domain of the M2 protein (M2e) and the sequence (aa76-130) of the second subunit of HA (HA2) were used as target antigens. In this study, we investigated the ability of the Flg-HA2-2-4M2ehs protein to activate innate immunity and stimulate the formation of T-cell response in mice of different genetic lines after intranasal immunization. Our studies showed that the Flg-HA2-2-4M2ehs protein was manifested in an increase in the relative content of neutrophils, monocytes, and interstitial macrophages, against the backdrop of a decrease in the level of dendritic cells and increased expression in the CD86 marker. In the lungs of BALB/c mice, immunization with the Flg-HA2-2-4M2ehs protein induced the formation of antigen-specific CD4+ and CD8+ effector memory T cells, producing TNF-α. In mice C57Bl/6, the formation of antigen-specific effector CD8+ T cells, predominantly producing IFN-γ+, was demonstrated. The data obtained showed the formation of CD8+ and CD4+ effector memory T cells expressing the CD107a.

8.
Viruses ; 14(12)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36560694

RESUMEN

Background: Exosomes are involved in intercellular communication and can transfer regulatory molecules between cells. Consequently, they can participate in host immune response regulation. For the influenza A virus (IAV), there is very limited information on changes in exosome composition during cell infection shedding light on the potential role of these extracellular membrane vesicles. Thus, the aim of our work was to study changes in exosomal composition following IAV infection of cells, as well as to evaluate their effect on uninfected cells. Methods: To characterize changes in the composition of cellular miRNAs and mRNAs of exosomes during IAV infection of A549 cells, NGS was used, as well as PCR to identify viral genes. Naïve A549 cells were stimulated with infected-cell-secreted exosomes for studying their activity. Changes in the expression of genes associated with the cell's immune response were shown using PCR. The effect of exosomes on IAV replication was shown in MDCK cells using In-Cell ELISA and PCR of the supernatants. Results: A change in the miRNA composition (miR-21-3p, miR-26a-5p, miR-23a-5p, miR-548c-5p) and mRNA composition (RPL13A, MKNK2, TRIB3) of exosomes under the influence of the IAV was shown. Many RNAs were involved in the regulation of the immune response of the cell, mainly by suppressing it. After exosome stimulation of naïve cells, a significant decrease in the expression of genes involved in the immune response was shown (RIG1, IFIT1, MDA5, COX2, NFκB, AnxA1, PKR, IL6, IL18). When infecting MDCK cells, a significant decrease in nucleoprotein levels was observed in the presence of exosomes secreted by mock-infected cells. Viral levels in supernatants also decreased. Conclusions: Exosomes secreted by IAV-infected cells could reduce the immune response of neighboring intact cells, leading to more effective IAV replication. This may be associated both with regulatory functions of cellular miRNAs and mRNAs carried by exosomes, or with the presence of viral mRNAs encoding proteins with an immunosuppressive function.


Asunto(s)
Exosomas , Virus de la Influenza A , Gripe Humana , MicroARNs , Humanos , Exosomas/metabolismo , Gripe Humana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Virus de la Influenza A/genética , Células A549
9.
Viruses ; 14(9)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36146847

RESUMEN

The emergence of the new coronavirus SARS-CoV-2 in late 2019 led to the global pandemic COVID-19, causing a profound socioeconomic crisis. Adequate diagnostic tools need to be developed to control the ongoing spread of infection. Virus-specific humoral immunity in COVID-19 patients and those vaccinated with specific vaccines has been characterized in numerous studies, mainly using Spike protein-based serology tests. However, Spike protein and specifically its receptor-binding domain (RBD) are mutation-prone, suggesting the reduced sensitivity of the validated serology tests in detecting antibodies raised to variants of concern (VOC). The viral nucleocapsid (N) protein is more conserved compared to Spike, but little is known about cross-reactivity of the N-specific antibodies between the ancestral B.1 virus and different VOCs. Here, we generated recombinant N phosphoproteins from different SARS-CoV-2 strains and analyzed the magnitude of N-specific antibodies in COVID-19 convalescent sera using an in-house N-based ELISA test system. We found a strong positive correlation in the magnitude of anti-N (B.1) antibodies and antibodies specific to various VOCs in COVID-19-recovered patients, suggesting that the N-binding antibodies are highly cross-reactive, and the most immunogenic epitopes within this protein are not under selective pressure. Overall, our study suggests that the RBD-based serology tests should be timely updated to reflect the constantly evolving nature of the SARS-CoV-2 Spike protein, whereas the validated N-based test systems can be used for the analysis of sera from COVID-19 patients regardless of the strain that caused the infection.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/diagnóstico , COVID-19/terapia , Epítopos , Humanos , Inmunización Pasiva , Nucleocápside , Fosfoproteínas , SARS-CoV-2 , Sueroterapia para COVID-19
10.
Biometals ; 35(6): 1157-1168, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962914

RESUMEN

The work is devoted to the study of the structural characteristics of the myeloperoxidase-ceruloplasmin-thrombin complex using small-angle neutron scattering methods in combination with computer modeling, as well as surface plasmon resonance and solid-phase enzyme assay. We have previously shown that the functioning of active myeloperoxidase during inflammation, despite the presence in the blood of an excess of ceruloplasmin which inhibits its activity, is possible due to the partial proteolysis of ceruloplasmin by thrombin. In this study, the myeloperoxidase-ceruloplasmin-thrombin heterohexamer was obtained in vitro. The building of a heterohexamer full-atomic model in silico, considering the glycosylation of the constituent proteins, confirmed the absence of steric barriers for the formation of protein-protein contacts. It was shown that the partial proteolysis of ceruloplasmin does not affect its ability to bind to myeloperoxidase, and a structural model of the heterohexamer was obtained using the small-angle neutron scattering method.


Asunto(s)
Ceruloplasmina , Peroxidasa , Trombina , Colorantes , Pruebas de Enzimas
11.
J Pharm Biomed Anal ; 210: 114575, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34999434

RESUMEN

In this work, we have extended our previously proposed approach for determining protein concentrations in human serum (using MALDI-TOF mass spectrometry) to include simultaneous analysis of several proteins associated with acute inflammation (alpha-2-macroglobulin, fetuin-A, serum amyloid A1). This technique can be used to diagnose systemic inflammation and provides results in 4-5 h. The developed approach was verified using standard immunological methods (ELISA). Samples from 87 individuals, in specific groups, were used for testing and validation: control; inflammatory soft tissue disease accompanied by sepsis; influenza A infection; or COVID-19. The feasibility of differentiating patient groups with the aforementioned conditions was analyzed using a combination of the inflammatory markers described. For fetuin-A and serum amyloid A1, diagnostically significant concentration ranges were established.


Asunto(s)
COVID-19 , Biomarcadores , Humanos , SARS-CoV-2 , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Pharmaceutics ; 15(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36678637

RESUMEN

The design of cationic liposomes for efficient mRNA delivery can significantly improve mRNA-based therapies. Lipoplexes based on polycationic lipid 1,26-bis(cholest-5-en-3ß-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2X3) and helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) were formulated in different molar ratios (1:1, 1:2, 1:3) to efficiently deliver model mRNAs to BHK-21 and A549. The objective of this study was to examine the effect of 2X3-DOPE composition as well as lipid-to-mRNA ratio (amino-to-phosphate group ratio, N/P) on mRNA transfection. We found that lipoplex-mediated transfection efficiency depends on both liposome composition and the N/P ratio. Lipoplexes with an N/P ratio of 10/1 showed nanometric hydrodynamic size, positive ζ potential, maximum loading, and transfection efficiency. Liposomes 2X3-DOPE (1:3) provided the superior delivery of both mRNA coding firefly luciferase and mRNA-eGFP into BHK-21 cells and A549 cells, compared with commercial Lipofectamine MessengerMax.

13.
Process Biochem ; 111: 32-39, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34493923

RESUMEN

Type III interferons exhibit antiviral activity against influenza viruses, coronaviruses, rotaviruses, and others. In addition, this type of interferon theoretically has therapeutic advantages, in comparison with type I interferons, due to its ability to activate a narrower group of genes in a relatively small group of target cells. Hence, it can elicit more targeted antiviral or immunomodulatory responses. Obtaining biologically-active interferon lambda (hIFN-λ1) is fraught with difficulties at the stage of expression in soluble form or, in the case of expression in the form of inclusion bodies, at the stage of refolding. In this work, hIFN-λ1 was expressed in the form of inclusion bodies, and a simple, effective refolding method was developed. Efficient and scalable methods for chromatographic purification of recombinant hIFN-λ1 were also developed. High-yield, high-purity product was obtained through optimization of several processes including: recombinant protein expression; metal affinity chromatography; cation exchange chromatography; and an intermediate protein refolding stage. The obtained protein was shown to feature expected specific biological activity in line with published effects: induction of MxA gene expression in A549 cells and antiviral activity against influenza A virus.

14.
Vaccines (Basel) ; 9(4)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923548

RESUMEN

New strategies providing protection against tuberculosis (TB) are still pending. The airborne nature of Mycobacterium tuberculosis (M.tb) infection assumes that the mucosal delivery of the TB vaccine could be a more promising strategy than the systemic route of immunization. We developed a mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing truncated NS1 protein NS1(1-124) and a full-length TB10.4 and HspX proteins of M.tb within an NS1 protein open reading frame. The Flu/THSP vector was safe and stimulated a systemic TB-specific CD4+ and CD8+ T-cell immune response after intranasal immunization in mice. Double intranasal immunization with the Flu/THSP vector induced protection against two virulent M.tb strains equal to the effect of BCG subcutaneous injection in mice. In a guinea pig TB model, one intranasal immunization with Flu/THSP improved protection against M.tb when tested as a vaccine candidate for boosting BCG-primed immunity. Importantly, enhanced protection provided by a heterologous BCG-prime → Flu/THSP vector boost immunization scheme was associated with a significantly reduced lung and spleen bacterial burden (mean decrease of 0.77 lg CFU and 0.72 lg CFU, respectively) and improved lung pathology 8.5 weeks post-infection with virulent M.tb strain H37Rv.

15.
Biochimie ; 185: 87-95, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33744341

RESUMEN

One of the main functions of alpha-2-macroglobulin (A2M) in human blood serum is the binding of all classes of protease. It is known that trypsin, after such interaction, possesses modified proteolytic activity. Trypsin first hydrolyzes two bonds in A2M's 'bait region', and the peptide 705VGFYESDVMGR715 is released from A2M. In this work, specifics of the A2M-trypsin interaction were used to determine A2M concentration directly in human blood serum using MALDI mass-spectrometry. Following exogenous addition of trypsin to human blood serum in vitro, the concentration of the VGFYESDVMGR peptide was measured, using its isotopically-labeled analogue (18O), and A2M concentration was calculated. The optimized mass spectrometric approach was verified using a standard method for A2M concentration determination (ELISA) and the relevant statistical analysis methods. It was also shown that trypsin's modified proteolytic activity in the presence of serum A2M can be used to analyze other serum proteins, including potential biomarkers of pathological processes. Thus, this work describes a promising approach to serum biomarker analysis that can be technically extended in several useful directions.


Asunto(s)
Péptidos/sangre , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tripsina/sangre , Biomarcadores/sangre , Humanos , alfa-Macroglobulinas
16.
Vaccines (Basel) ; 8(4)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322762

RESUMEN

A series of commercial inactivated influenza vaccines (IIVs) used in the Russian National Immunization Program were characterized to evaluate their protective properties on an animal model. Standard methods for quantifying immune response, such as hemagglutination inhibition (HAI) assay and virus neutralization (VN) assay, allowed us to distinguish the immunogenic effect of various IIVs from that of placebo. However, these standard approaches are not suitable to determine the role of various vaccine components in immune response maturation. The expanded methodological base including an enzyme-linked immunosorbent assay (ELISA) and a neuraminidase ELISA (NA-ELISA) helped us to get wider characteristics and identify the effectiveness of various commercial vaccines depending on the antigen content. Investigations conducted showed that among the IIVs tested, Ultrix®, Ultrix® Quadri and VAXIGRIP® elicit the most balanced immune response, including a good NA response. For Ultrix®, Ultrix® Quadri, and SOVIGRIPP® (FORT LLC), the whole-virus specific antibody subclass IgG1, measured in ELISA, seriously prevailed over IgG2a, while, for VAXIGRIP® and SOVIGRIPP® (NPO Microgen JSC) preparations, the calculated IgG1/IgG2a ratio was close to 1. So, the immune response varied drastically across different commercial IIVs injected in mice.

17.
PLoS One ; 15(11): e0242732, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33232386

RESUMEN

Exosomes are a type of extracellular vesicles (EVs) secreted by multiple mammalian cell types and involved in intercellular communication. Numerous studies have explored the diagnostic and therapeutic potential of exosomes. The key challenge is the lack of efficient and standard techniques for isolation and downstream analysis of nanovesicles. Conventional isolation methods, such as ultracentrifugation, precipitation, filtration, chromatography, and immune-affinity-based approaches, rely on specific physical properties or on surface biomarkers. However, any of the existing methods has its limitations. Various parameters, such as efficacy, specificity, labor input, cost and scalability, and standardization options, must be considered for the correct choice of appropriate approach. The isolation of exosomes from biological fluids is especially challenged by the complex nature and variability of these liquids. Here, we present a comparison of five protocols for exosome isolation from human plasma: two chemical affinity precipitation methods (lectin-based purification and SubX™ technology), immunoaffinity precipitation, and reference ultracentrifugation-based exosome isolation method in two modifications. An approach for the isolation of exosomes based on the phenomenon of binding and aggregation of these particles via clusters of outer membrane phosphate groups in the presence of SubX™ molecules has been put forward in the present study. The isolated EVs were characterized based upon size, quantity, and protein content.


Asunto(s)
Micropartículas Derivadas de Células/química , Exosomas/química , Inmunoprecipitación , Plasma/química , Ultracentrifugación , Humanos , Lectinas/química
18.
Biochem Biophys Res Commun ; 520(1): 136-139, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31582209

RESUMEN

This work focuses on the study of multimeric alpha-lactalbumin oleic acid and lactoferrin oleic acid complexes. The purpose of the research is to study possible mechanisms involved in their pro-apoptotic activities, as seen in some tumor cell cultures. Complexes featuring oleic acid (OA) with human alpha-lactalbumin (hAl) or with bovine alpha-lactalbumin (bAl), and human lactoferrin (hLf) were investigated using small-angle neutron scattering (SANS). It was shown that while alpha-lactalbumin protein complexes were formed on the surface of polydisperse OA micelles, the lactoferrin complexes comprised a monodisperse system of nanoscale particles. Both hAl and hLf complexes appeared to interact with the chromatin of isolated nuclei affecting chromatin structural organization. The possible roles of these processes in the specific anti-tumor activity of these complexes are discussed.


Asunto(s)
Núcleo Celular/química , Cromatina/química , Lactalbúmina/química , Lactoferrina/química , Micelas , Ácido Oléico/química , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Bovinos , Células HeLa , Humanos , Ácidos Oléicos/química , Dispersión del Ángulo Pequeño
19.
Biologicals ; 58: 44-49, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30661900

RESUMEN

In this work, monoclonal antibodies to the adenovirus protein hexon were produced, and their biological and diagnostic properties were characterized. The specific activities of the new monoclonal antibodies, with respect to various adenovirus types, were studied by enzyme-linked immunosorbent assay, indirect immunofluorescence, and western blot analysis. The data demonstrate the potential of the monoclonal antibodies developed, namely 4B7 and 6B12, for use in the development of modern diagnostic assays.


Asunto(s)
Adenoviridae/inmunología , Anticuerpos Monoclonales de Origen Murino/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Células A549 , Animales , Humanos , Ratones , Ratones Endogámicos BALB C
20.
Breast Cancer Res Treat ; 174(1): 129-141, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30484103

RESUMEN

PURPOSE: The interaction between malignant cells and surrounding healthy tissues is a critical factor in the metastatic progression of breast cancer (BC). Extracellular vesicles, especially exosomes, are known to be involved in inter-cellular communication during cancer progression. In the study presented herein, we aimed to evaluate the role of circulating plasma exosomes in the metastatic dissemination of BC and to investigate the underlying molecular mechanisms of this phenomenon. METHODS: Exosomes isolated from plasma of healthy female donors were applied in various concentrations into the medium of MDA-MB-231 and MCF-7 cell lines. Motility and invasive properties of BC cells were examined by random migration and Transwell invasion assays, and the effect of plasma exosomes on the metastatic dissemination of BC cells was demonstrated in an in vivo zebrafish model. To reveal the molecular mechanism of interaction between plasma exosomes and BC cells, a comparison between un-treated and enzymatically modified exosomes was performed, followed by mass spectrometry, gene ontology, and pathway analysis. RESULTS: Plasma exosomes stimulated the adhesive properties, two-dimensional random migration, and transwell invasion of BC cells in vitro as well as their in vivo metastatic dissemination in a dose-dependent manner. This stimulatory effect was mediated by interactions of surface exosome proteins with BC cells and consequent activation of focal adhesion kinase (FAK) signaling in the tumor cells. CONCLUSIONS: Plasma exosomes have a potency to stimulate the metastasis-promoting properties of BC cells. This pro-metastatic property of normal plasma exosomes may have impact on the course of the disease and on its prognosis.


Asunto(s)
Neoplasias de la Mama/patología , Exosomas/patología , Quinasa 1 de Adhesión Focal/metabolismo , Invasividad Neoplásica/patología , Animales , Neoplasias de la Mama/enzimología , Movimiento Celular/fisiología , Exosomas/metabolismo , Femenino , Xenoinjertos , Humanos , Células MCF-7 , Transducción de Señal/fisiología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...