RESUMEN
Recent advancements in engineered microbial systems capable of deployment in complex environments have enabled the creation of unique signatures for environmental forensics operations. These microbial systems must be robust, able to thrive in specific environments of interest and contain molecular signatures, enabling the detection of the community across conditions. Furthermore, these systems must balance biocontainment concerns with the stability and persistence required for environmental forensics. Here we evaluate the stability and persistence of a recently described microbial system composed of germination-deficient Bacillus subtilis and Saccharomyces cerevisiae spores containing nonredundant DNA barcodes in a controlled simulated home environment. These spore-based microbial communities were found to be persistent in the simulated environment across 30-day periods and across multiple surface types. To improve the repeatability and reproducibility in detecting the DNA barcodes, we evaluated several spore lysis and sampling processes paired with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) -CRISPR-associated proteins (Cas) detection (Sherlock). Finally, having optimized the detectability of the spores, we demonstrate that we can detect the spores transferring across multiple material types. Together, we further demonstrate the utility of a recently described microbial forensics system and highlight the importance of independent validation and verification of synthetic biology tools and applications. Graphical Abstract.
RESUMEN
Cellular lysates capable of transcription and translation have become valuable tools for prototyping genetic circuits, screening engineered functional parts, and producing biological components. Here we report that lysates derived from Yersinia pestis CO92- are functional and can utilize both the E. coli σ70 and the bacteriophage T7 promoter systems to produce green fluorescent protein (GFP). Because of the natural lifestyle of Y. pestis, lysates were produced from cultures grown at 21 °C, 26 °C, and 37 °C to mimic the infection cycle. Regardless of the promoter system the GFP production from 37 °C was the most productive and the 26 °C lysate was the least. When reactions are initiated with 5 nM of DNA, the GFP output of the 37 °C lysate is comparable with the productivity of other non-E. coli systems. The data we present demonstrate that, without genetic modification to enhance productivity, cell-free extracts from Y. pestis are functional and dependent on the temperature at which the bacterium was grown.