Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Anim Microbiome ; 6(1): 39, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030654

RESUMEN

Zinc is an essential trace element required in the diet of all species. While the effects of zinc have been studied in growing calves, little is known about the effect of zinc on the microbiota of the gestating cow or her neonatal calf. Understanding factors that shape the gut health of neonatal animals and evaluating the effect of dietary supplements in adult gestating animals is important in promoting animal health and informing feeding practices. The aims of this study were to determine the effect of dietary zinc on the microbiota and resistome of the gestating cow and calf. Gestating cows received standard (40 ppm) or high (205 ppm) dietary zinc levels from dry off to calving. Fecal samples were collected from cows upon enrollment and at calving and from neonatal calves. Fecal samples underwent 16S rRNA sequencing and a subset also underwent shotgun metagenomic sequencing. The effect of zinc supplementation on the diversity and composition of the cow and calf microbiome and resistome was assessed. Alpha and beta diversity and composition of the microbiota were significantly altered over time but not by treatment in the cows, with alpha diversity decreasing and 14 genera found at significantly higher relative abundances at calving compared to enrollment. Levels of 27 antimicrobial resistance genes significantly increased over time. Only a small number of taxa were differentially expressed at calving in treatment and control groups, including Faecalibacterium, Bacteroides, Turicibacter, and Bifidobacterium pseudolongum. No effect of the dam's treatment group was observed on the diversity or composition of the neonatal calf microbiota. The calf resistome, which was relatively rich and diverse compared to the cow, was also unaffected by the dam's treatment group. The impact of high levels of dietary zinc thus appeared to be minimal, with no observed changes in alpha or beta diversity, and few changes in the relative abundance of a small number of taxa and antimicrobial resistance genes.

2.
Nature ; 626(8000): 859-863, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326609

RESUMEN

Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.


Asunto(s)
Aciltransferasas , Amidohidrolasas , Aminas , Ácidos y Sales Biliares , Biocatálisis , Microbioma Gastrointestinal , Humanos , Aciltransferasas/metabolismo , Amidohidrolasas/metabolismo , Aminas/química , Aminas/metabolismo , Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Estudios de Cohortes , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiología , Ligandos , Receptor X de Pregnano/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción/metabolismo , Lactante , Técnicas de Cultivo de Célula
3.
mBio ; 15(1): e0165623, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38078767

RESUMEN

IMPORTANCE: Clostridioides difficile and Enterococcus faecalis are two pathogens of great public health importance. Both bacteria colonize the human gastrointestinal tract where they are known to interact in ways that worsen disease outcomes. We show that the damage associated with C. difficile infection (CDI) releases nutrients that benefit E. faecalis. One particular nutrient, heme, allows E. faecalis to use oxygen to generate energy and grow better in the gut. Understanding the mechanisms of these interspecies interactions could inform therapeutic strategies for CDI.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Humanos , Enterococcus faecalis , Infecciones por Clostridium/microbiología , Bacterias
4.
J Pediatr Gastroenterol Nutr ; 77(6): e84-e92, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37779227

RESUMEN

OBJECTIVES: Probiotic supplementation has been proposed as a therapeutic intervention to improve growth outcomes in children with undernutrition. The objective of this review is to synthesize the current evidence on probiotic supplementation for promotion of growth in undernourished children. METHODS: We searched MEDLINE, Cochrane CENTRAL, CINAHL, Embase, LILACS, and Scopus for randomized controlled trials (RCTs) that administered probiotics or eligible comparators to undernourished children below 5 years of age. Our primary outcomes of interest were weight-for-age, height-for-age, and weight-for-height at the longest follow-up points reported. Random-effects meta-analysis was used to calculate standardized mean differences (SMD) for continuous outcomes and risk ratios for dichotomous outcomes. The Grading of Recommendations Assessment, Development and Evaluation criteria were used to assess certainty of the evidence. RESULTS: Nine RCTs with 5295 children in total were included. Durations of treatment ranged from 1 month to 1 year. Pooled analyses from 7 studies showed that probiotics may have little to no effect on weight-for-age (SMD 0.05 standard deviation [SD], 95% CI: -0.04 to 0.13, n = 2115 children; low-certainty evidence) and height-for-age (SMD -0.04 SD, 95% CI: -0.14 to 0.07, n = 1357 children; low-certainty evidence). The evidence was very uncertain about the effect on weight-for-height. CONCLUSIONS: Probiotics may have little to no effect on anthropometry in undernourished children, though there is considerable heterogeneity among the trials reviewed thus far. The interaction between gut microbiota and human nutrition is complex, and further research is needed to determine how the gut microbiome may contribute to undernutrition and how probiotics may affect growth in this vulnerable population.


Asunto(s)
Trastornos de la Nutrición del Niño , Desnutrición , Probióticos , Niño , Humanos , Probióticos/uso terapéutico , Estado Nutricional , Desnutrición/terapia , Trastornos de la Nutrición del Niño/terapia , Poblaciones Vulnerables
5.
Sci Adv ; 9(29): eadh5552, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37467340

RESUMEN

Clostridioides difficile damages the colonic mucosa through the action of two potent exotoxins. Factors shaping C. difficile pathogenesis are incompletely understood but are likely due to the ecological factors in the gastrointestinal ecosystem, mucosal immune responses, and environmental factors. Little is known about the role of pharmaceutical drugs during C. difficile infection (CDI), but recent studies have demonstrated that nonsteroidal anti-inflammatory drugs (NSAIDs) worsen CDI. The mechanism underlying this phenomenon remains unclear. Here, we show that NSAIDs exacerbate CDI by disrupting colonic epithelial cells (CECs) and sensitizing cells to C. difficile toxin-mediated damage independent of their canonical role of inhibiting cyclooxygenase (COX) enzymes. Notably, we find that NSAIDs and C. difficile toxins target the mitochondria of CECs and enhance C. difficile toxin-mediated damage. Our results demonstrate that NSAIDs exacerbate CDI by synergizing with C. difficile toxins to damage host cell mitochondria. Together, this work highlights a role for NSAIDs in exacerbating microbial infection in the colon.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Toxinas Bacterianas/toxicidad , Ecosistema , Antiinflamatorios no Esteroideos/efectos adversos , Células Epiteliales
6.
Cochrane Database Syst Rev ; 4: CD013871, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37096495

RESUMEN

BACKGROUND: Clostridioides difficile (formerly known as Clostridium difficile) is a bacterium that can cause potentially life-threatening diarrheal illness in individuals with an unhealthy mixture of gut bacteria, known as dysbiosis, and can cause recurrent infections in nearly a third of infected individuals. The traditional treatment of recurrent C difficile infection (rCDI) includes antibiotics, which may further exacerbate dysbiosis. There is growing interest in correcting the underlying dysbiosis in rCDI using of fecal microbiota transplantation (FMT); and there is a need to establish the benefits and harms of FMT for the treatment of rCDI based on data from randomized controlled trials. OBJECTIVES: To evaluate the benefits and harms of donor-based fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile infection in immunocompetent people. SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was 31 March 2022. SELECTION CRITERIA: We considered randomized trials of adults or children with rCDI for inclusion. Eligible interventions must have met the definition of FMT, which is the administration of fecal material containing distal gut microbiota from a healthy donor to the gastrointestinal tract of a person with rCDI. The comparison group included participants who did not receive FMT and were given placebo, autologous FMT, no intervention, or antibiotics with activity against C difficile. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were 1. proportion of participants with resolution of rCDI and 2. serious adverse events. Our secondary outcomes were 3. treatment failure, 4. all-cause mortality, 5. withdrawal from study, 6. rate of new CDI infection after a successful FMT, 7. any adverse event, 8. quality of life, and 9. colectomy. We used the GRADE criteria to assess certainty of evidence for each outcome. MAIN RESULTS: We included six studies with 320 participants. Two studies were conducted in Denmark, and one each in the Netherlands, Canada, Italy, and the US. Four were single-center and two were multicenter studies. All studies included only adults. Five studies excluded people who were severely immunocompromised, with only one study including 10 participants who were receiving immunosuppressive therapy out of the 64 enrolled; these were similarly distributed between the FMT arm (4/24 or 17%) and comparison arms (6/40 or 15%). The route of administration was the upper gastrointestinal tract via a nasoduodenal tube in one study, two studies used enema only, two used colonoscopic only delivery, and one used either nasojejunal or colonoscopic delivery, depending on a clinical determination of whether the recipient could tolerate a colonoscopy. Five studies had at least one comparison group that received vancomycin. The risk of bias (RoB 2) assessments did not find an overall high risk of bias for any outcome. All six studies assessed the efficacy and safety of FMT for the treatment of rCDI. Pooled results from six studies showed that the use of FMT in immunocompetent participants with rCDI likely leads to a large increase in resolution of rCDI in the FMT group compared to control (risk ratio (RR) 1.92, 95% confidence interval (CI) 1.36 to 2.71; P = 0.02, I2 = 63%; 6 studies, 320 participants; number needed to treat for an additional beneficial outcome (NNTB) 3; moderate-certainty evidence). Fecal microbiota transplantation probably results in a slight reduction in serious adverse events; however, the CIs around the summary estimate were wide (RR 0.73, 95% CI 0.38 to 1.41; P = 0.24, I² = 26%; 6 studies, 320 participants; NNTB 12; moderate-certainty evidence). Fecal microbiota transplantation may result in a reduction in all-cause mortality; however, the number of events was small, and the CIs of the summary estimate were wide (RR 0.57, 95% CI 0.22 to 1.45; P = 0.48, I2 = 0%; 6 studies, 320 participants; NNTB 20; low-certainty evidence). None of the included studies reported colectomy rates. AUTHORS' CONCLUSIONS: In immunocompetent adults with rCDI, FMT likely leads to a large increase in the resolution of recurrent Clostridioides difficile infection compared to alternative treatments such as antibiotics. There was no conclusive evidence regarding the safety of FMT for the treatment of rCDI as the number of events was small for serious adverse events and all-cause mortality. Additional data from large national registry databases might be required to assess any short-term or long-term risks with using FMT for the treatment of rCDI. Elimination of the single study that included some immunocompromised people did not alter these conclusions. Due to the low number of immunocompromised participants enrolled, conclusions cannot be drawn about the risks or benefits of FMT for rCDI in the immunocompromised population.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Adulto , Niño , Humanos , Trasplante de Microbiota Fecal/efectos adversos , Clostridioides , Calidad de Vida , Disbiosis , Recurrencia , Antibacterianos/uso terapéutico , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Resultado del Tratamiento
7.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G354-G368, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36852920

RESUMEN

Calorie restriction can enhance the regenerative capacity of the injured intestinal epithelium. Among other metabolic changes, calorie restriction can activate the autophagy pathway. Although independent studies have attributed the regenerative benefit of calorie restriction to downregulation of mTORC1, it is not known whether autophagy itself is required for the regenerative benefit of calorie restriction. We used mouse and organoid models with autophagy gene deletion to evaluate the contribution of autophagy to intestinal epithelial regeneration following calorie restriction. In the absence of injury, mice with intestinal epithelial-specific deletion of autophagy gene Atg7 (Atg7ΔIEC) exhibit weight loss and histological changes similar to wild-type mice following calorie restriction. Conversely, calorie-restricted Atg7ΔIEC mice displayed a significant reduction in regenerative crypt foci after irradiation compared with calorie-restricted wild-type mice. Targeted analyses of tissue metabolites in calorie-restricted mice revealed an association between calorie restriction and reduced glycocholic acid (GCA) in wild-type mice but not in Atg7ΔIEC mice. To evaluate whether GCA can directly modulate epithelial stem cell self-renewal, we performed enteroid formation assays with or without GCA. Wild-type enteroids exhibited reduced enteroid formation efficiency in response to GCA treatment, suggesting that reduced availability of GCA during calorie restriction may be one mechanism by which calorie restriction favors epithelial regeneration in a manner dependent upon epithelial autophagy. Taken together, our data support the premise that intestinal epithelial Atg7 is required for the regenerative benefit of calorie restriction, due in part to its role in modulating luminal GCA with direct effects on epithelial stem cell self-renewal.NEW & NOTEWORTHY Calorie restriction is associated with enhanced intestinal regeneration after irradiation, but the requirement of autophagy for this process is not known. Our data support the premise that intestinal epithelial autophagy is required for the regenerative benefit of calorie restriction. We also report that luminal levels of primary bile acid glycocholic acid are modulated by epithelial cell autophagy during calorie restriction with direct effects on epithelial stem cell function.


Asunto(s)
Restricción Calórica , Intestinos , Ratones , Animales , Intestinos/fisiología , Mucosa Intestinal/metabolismo , Células Epiteliales , Autofagia/genética
8.
Front Pharmacol ; 14: 1074619, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778002

RESUMEN

Many enzymes require post-translational modifications or cofactor machinery for primary function. As these catalytically essential moieties are highly regulated, they act as dual sensors and chemical handles for context-dependent metabolic activity. Clostridioides difficile is a major nosocomial pathogen that infects the colon. Energy generating metabolism, particularly through amino acid Stickland fermentation, is central to colonization and persistence of this pathogen during infection. Here using activity-based protein profiling (ABPP), we revealed Stickland enzyme activity is a biomarker for C. difficile infection (CDI) and annotated two such cofactor-dependent Stickland reductases. We structurally characterized the cysteine-derived pyruvoyl cofactors of D-proline and glycine reductase in C. difficile cultures and showed through cofactor monitoring that their activity is regulated by their respective amino acid substrates. Proline reductase was consistently active in toxigenic C. difficile, confirming the enzyme to be a major metabolic driver of CDI. Further, activity-based hydrazine probes were shown to be active site-directed inhibitors of proline reductase. As such, this enzyme activity, via its druggable cofactor modality, is a promising therapeutic target that could allow for the repopulation of bacteria that compete with C. difficile for proline and therefore restore colonization resistance against C. difficile in the gut.

9.
J Vis Exp ; (189)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36468707

RESUMEN

Understanding the metabolic consequences of microbial interactions that occur during infection presents a unique challenge to the field of biomedical imaging. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry represents a label-free, in situ imaging modality capable of generating spatial maps for a wide variety of metabolites. While thinly sectioned tissue samples are now routinely analyzed via this technology, imaging mass spectrometry analyses of non-traditional substrates, such as bacterial colonies commonly grown on agar in microbiology research, remain challenging due to the high water content and uneven topography of these samples. This paper demonstrates a sample preparation workflow to allow for imaging mass spectrometry analyses of these sample types. This process is exemplified using bacterial co-culture macrocolonies of two gastrointestinal pathogens: Clostridioides difficile and Enterococcus faecalis. Studying microbial interactions in this well-defined agar environment is also shown to complement tissue studies aimed at understanding microbial metabolic cooperation between these two pathogenic organisms in mouse models of infection. Imaging mass spectrometry analyses of the amino acid metabolites arginine and ornithine are presented as representative data. This method is broadly applicable to other analytes, microbial pathogens or diseases, and tissue types where a spatial measure of cellular or tissue biochemistry is desired.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Interacciones Microbianas , Animales , Ratones , Agar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Técnicas de Cocultivo
10.
Nature ; 611(7937): 780-786, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36385534

RESUMEN

Enteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract1. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens2. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile. Through a parallel process of nutrient restriction and cross-feeding, enterococci shape the metabolic environment in the gut and reprogramme C. difficile metabolism. Enterococci provide fermentable amino acids, including leucine and ornithine, which increase C. difficile fitness in the antibiotic-perturbed gut. Parallel depletion of arginine by enterococci through arginine catabolism provides a metabolic cue for C. difficile that facilitates increased virulence. We find evidence of microbial interaction between these two pathogenic organisms in multiple mouse models of infection and patients infected with C. difficile. These findings provide mechanistic insights into the role of pathogenic microbiota in the susceptibility to and the severity of C. difficile infection.


Asunto(s)
Clostridioides difficile , Enterococcus , Interacciones Microbianas , Animales , Humanos , Ratones , Antibacterianos/farmacología , Arginina/deficiencia , Arginina/metabolismo , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidad , Clostridioides difficile/fisiología , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Enterococcus/efectos de los fármacos , Enterococcus/metabolismo , Enterococcus/patogenicidad , Enterococcus/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Intestinos/microbiología , Leucina/metabolismo , Ornitina/metabolismo , Virulencia , Susceptibilidad a Enfermedades
11.
Cell Host Microbe ; 30(6): 759-761, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35679821

RESUMEN

In the complex gastrointestinal tract landscape, competition for resources is fierce among microbes. One way to avoid conflict is migration to a different microhabitat. In this issue of Cell Host & Microbe, Liou et al. demonstrate how a commensal and pathogen differ in how and where they acquire nitrate.


Asunto(s)
Tracto Gastrointestinal , Simbiosis , Nutrientes
12.
J Clin Invest ; 132(10)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35316215

RESUMEN

Gastric carcinogenesis is mediated by complex interactions among Helicobacter pylori, host, and environmental factors. Here, we demonstrate that H. pylori augmented gastric injury in INS-GAS mice under iron-deficient conditions. Mechanistically, these phenotypes were not driven by alterations in the gastric microbiota; however, discovery-based and targeted metabolomics revealed that bile acids were significantly altered in H. pylori-infected mice with iron deficiency, with significant upregulation of deoxycholic acid (DCA), a carcinogenic bile acid. The severity of gastric injury was further augmented when H. pylori-infected mice were treated with DCA, and, in vitro, DCA increased translocation of the H. pylori oncoprotein CagA into host cells. Conversely, bile acid sequestration attenuated H. pylori-induced injury under conditions of iron deficiency. To translate these findings to human populations, we evaluated the association between bile acid sequestrant use and gastric cancer risk in a large human cohort. Among 416,885 individuals, a significant dose-dependent reduction in risk was associated with cumulative bile acid sequestrant use. Further, expression of the bile acid receptor transmembrane G protein-coupled bile acid receptor 5 (TGR5) paralleled the severity of carcinogenic lesions in humans. These data demonstrate that increased H. pylori-induced injury within the context of iron deficiency is tightly linked to altered bile acid metabolism, which may promote gastric carcinogenesis.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Deficiencias de Hierro , Neoplasias Gástricas , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Ácidos y Sales Biliares/metabolismo , Carcinogénesis/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Inflamación/patología , Ratones , Neoplasias Gástricas/genética
13.
Curr Opin Microbiol ; 65: 167-174, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34894543

RESUMEN

Clostridioides difficile is one of the leading causes of nosocomial infections worldwide. Increases in incidence, severity, and healthcare cost associated with C. difficile infection (CDI) have made this pathogen an urgent public health threat worldwide. The factors shaping the evolving epidemiology of CDI and impacting clinical outcomes of infection are not well understood, but involve tripartite interactions between the host, microbiota, and C. difficile. In addition to this, emerging data suggests an underappreciated role for environmental factors, such as diet and pharmaceutical drugs, in CDI. In this review, we discuss the role of nonsteroidal anti-inflammatory drugs (NSAIDs) and eicosanoids in CDI.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Antiinflamatorios no Esteroideos/uso terapéutico , Clostridioides , Clostridioides difficile/genética , Infecciones por Clostridium/tratamiento farmacológico , Humanos , Dolor
14.
J Pediatric Infect Dis Soc ; 10(Supplement_3): S8-S15, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34791392

RESUMEN

Clostridioides difficile has become the most common healthcare-associated pathogen in the United States, leading the US Centers for Disease Control and Prevention (CDC) to classify C. difficile as an "urgent" public health threat that requires "urgent and aggressive action." This call to action has led to new discoveries that have advanced our understanding of Clostridioides difficile infection (CDI) immunology and clinical development of immunologic-based therapies for CDI prevention. However, CDI immunology research has been limited in pediatric populations, and several unanswered questions remain regarding the function of host immune response in pediatric CDI pathogenesis and the potential role of immunologic-based therapies in children. This review summarizes the innate and adaptive immune responses previously characterized in animals and humans and provides a current update on clinical development of immunologic-based therapies for CDI prevention in adults and children. These data inform the future research needs for children.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Niño , Clostridioides , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/prevención & control , Humanos , Estados Unidos
16.
J Pediatric Infect Dis Soc ; 10(Supplement_3): S3-S7, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34791400

RESUMEN

Clostridioides difficile is a spore-forming, obligate anaerobe, and ubiquitous nosocomial pathogen. While C. difficile infection in adults causes a spectrum of disease, including pseudomembranous colitis and toxic megacolon, healthy infants are asymptomatically colonized at high rates. The mechanisms leading to high colonization rates and infant protection from C. difficile are currently unknown; however, the ecology and metabolic state of the intestinal microbiome are factors known to influence C. difficile pathogenesis. In this review, we will examine the aspects of the early-life microbiome that may contribute to the incidence of C. difficile and protection from disease manifestation in infants. We will also discuss whether features of the adult microbiota that enable and restrict C. difficile are prevalent during early-life colonization.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Enterocolitis Seudomembranosa , Microbiota , Adulto , Clostridioides , Infecciones por Clostridium/epidemiología , Humanos , Lactante
17.
Nutrients ; 14(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35010959

RESUMEN

Probiotics are commonly prescribed to promote a healthy gut microbiome in children. Our objective was to investigate the effects of probiotic supplementation on growth outcomes in children 0-59 months of age. We conducted a systematic review and meta-analysis which included randomized controlled trials (RCTs) that administered probiotics to children aged 0-59 months, with growth outcomes as a result. We completed a random-effects meta-analysis and calculated a pooled standardized mean difference (SMD) or relative risk (RR) and reported with a 95% confidence interval (CI). We included 79 RCTs, 54 from high-income countries (HIC), and 25 from low- and middle-income countries (LMIC). LMIC data showed that probiotics may have a small effect on weight (SMD: 0.26, 95% CI: 0.11-0.42, grade-certainty = low) and height (SMD 0.16, 95% CI: 0.06-0.25, grade-certainty = moderate). HIC data did not show any clinically meaningful effect on weight (SMD: 0.01, 95% CI: -0.04-0.05, grade-certainty = moderate), or height (SMD: -0.01, 95% CI: -0.06-0.04, grade-certainty = moderate). There was no evidence that probiotics affected the risk of adverse events. We conclude that in otherwise healthy children aged 0-59 months, probiotics may have a small but heterogenous effect on weight and height in LMIC but not in children from HIC.


Asunto(s)
Desarrollo Infantil/efectos de los fármacos , Suplementos Dietéticos , Probióticos/farmacología , Preescolar , Humanos , Lactante , Recién Nacido
18.
Cell Host Microbe ; 28(3): 422-433.e7, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32822584

RESUMEN

Children with inflammatory bowel diseases (IBD) are particularly vulnerable to infection with Clostridioides difficile (CDI). IBD and IBD + CDI have overlapping symptoms but respond to distinctive treatments, highlighting the need for diagnostic biomarkers. Here, we studied pediatric patients with IBD and IBD + CDI, comparing longitudinal data on the gut microbiome, metabolome, and other measures. The microbiome is dysbiotic and heterogeneous in both disease states, but the metabolome reveals disease-specific patterns. The IBD group shows increased concentrations of markers of inflammation and tissue damage compared with healthy controls, and metabolic changes associate with susceptibility to CDI. In IBD + CDI, we detect both metabolites associated with inflammation/tissue damage and fermentation products produced by C. difficile. The most discriminating metabolite found is isocaproyltaurine, a covalent conjugate of a distinctive C. difficile fermentation product (isocaproate) and an amino acid associated with tissue damage (taurine), which may be useful as a joint marker of the two disease processes.


Asunto(s)
Caproatos/metabolismo , Clostridioides difficile/metabolismo , Infecciones por Clostridium/complicaciones , Enfermedades Inflamatorias del Intestino/complicaciones , Metaboloma , Metagenómica , Taurina/metabolismo , Adolescente , Biomarcadores , Niño , Clostridioides difficile/genética , ADN Bacteriano , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Masculino
20.
Infect Immun ; 88(7)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32122939

RESUMEN

Clostridioides difficile is a Gram-positive, spore-forming, anaerobic bacterium that infects the human gastrointestinal tract, causing a wide range of disorders that vary in severity from mild diarrhea to toxic megacolon and/or death. Over the past decade, incidence, severity, and costs associated with C. difficile infection (CDI) have increased dramatically in both the pediatric and adult populations. The factors driving this rapidly evolving epidemiology remain largely unknown but are likely due in part to previously unappreciated host, microbiota, and environmental factors. In this review, we will cover the risks and challenges of CDI in adult and pediatric populations and examine asymptomatic colonization in infants. We will also discuss the emerging role of diet, pharmaceutical drugs, and pathogen-microbiota interactions in C. difficile pathogenesis, as well as the impact of host-microbiota interactions in the manifestation of C. difficile-associated disease. Finally, we highlight new areas of research and novel strategies that may shed light on this complex infection and provide insights into the future of microbiota-based therapeutics for CDI.


Asunto(s)
Clostridioides difficile/fisiología , Infecciones por Clostridium/microbiología , Infección Hospitalaria/microbiología , Casas de Salud , Factores de Edad , Anciano , Anciano de 80 o más Años , Portador Sano , Infecciones por Clostridium/epidemiología , Infección Hospitalaria/epidemiología , Susceptibilidad a Enfermedades , Humanos , Lactante , Recién Nacido , Recurrencia , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...