Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Oncol ; 42(1): 90-102, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37883734

RESUMEN

PURPOSE: Long-term survival in high-risk neuroblastoma (HRNB) is approximately 50%, with mortality primarily driven by relapse. Eflornithine (DFMO) to reduce risk of relapse after completion of immunotherapy was investigated previously in a single-arm, phase II study (NMTRC003B; ClinicalTrials.gov identifier: NCT02395666) that suggested improved event-free survival (EFS) and overall survival (OS) compared with historical rates in a phase III trial (Children Oncology Group ANBL0032; ClinicalTrials.gov identifier: NCT00026312). Using patient-level data from ANBL0032 as an external control, we present new analyses to further evaluate DFMO as HRNB postimmunotherapy maintenance. PATIENTS AND METHODS: NMTRC003B (2012-2016) enrolled patients with HRNB (N = 141) after standard up-front or refractory/relapse treatment who received up to 2 years of continuous treatment with oral DFMO (750 ± 250 mg/m2 twice a day). ANBL0032 (2001-2015) enrolled patients with HRNB postconsolidation, 1,328 of whom were assigned to dinutuximab (ch.14.18) treatment. Selection rules identified 92 NMTRC003B patients who participated in (n = 87) or received up-front treatment consistent with (n = 5) ANBL0032 (the DFMO/treated group) and 852 patients from ANBL0032 who could have been eligible for NMTRC003B after immunotherapy, but did not enroll (the NO-DFMO/control group). The median follow-up time for DFMO/treated patients was 6.1 years (IQR, 5.2-7.2) versus 5.0 years (IQR, 3.5-7.0) for NO-DFMO/control patients. Kaplan-Meier and Cox regression compared EFS and OS for overall groups, 3:1 (NO-DFMO:DFMO) propensity score-matched cohorts balanced on 11 baseline demographic and disease characteristics with exact matching on MYCN, and additional sensitivity analyses. RESULTS: DFMO after completion of immunotherapy was associated with improved EFS (hazard ratio [HR], 0.50 [95% CI, 0.29 to 0.84]; P = .008) and OS (HR, 0.38 [95% CI, 0.19 to 0.76]; P = .007). The results were confirmed with propensity score-matched cohorts and sensitivity analyses. CONCLUSION: The externally controlled analyses presented show a relapse risk reduction in patients with HRNB treated with postimmunotherapy DFMO.


Asunto(s)
Eflornitina , Neuroblastoma , Niño , Humanos , Eflornitina/efectos adversos , Puntaje de Propensión , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Recurrencia , Supervivencia sin Enfermedad
2.
Cell Death Dis ; 14(11): 739, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957138

RESUMEN

Expression of the UBE4B ubiquitin ligase is strongly associated with neuroblastoma patient outcomes, but the functional roles of UBE4B in neuroblastoma pathogenesis are not known. We evaluated interactions of UBE4B with the E3 ubiquitin ligase ITCH/AIP4 and the effects of UBE4B expression on Ku70 and c-FLIPL ubiquitination and proteasomal degradation by co-immunoprecipitation and Western blots. We also evaluated the role of UBE4B in apoptosis induced by histone deacetylase (HDAC) inhibition using Western blots. UBE4B binding to ITCH was mediated by WW domains in the ITCH protein. ITCH activation led to ITCH-UBE4B complex formation and recruitment of Ku70 and c-FLIPL via ITCH WW domains, followed by Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination and proteasomal degradation. HDAC inhibition induced Ku70 acetylation, leading to release of c-FLIPL and Bax from Ku70, increased Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination via the ITCH-UBE4B complex, and induction of apoptosis. UBE4B depletion led to reduced polyubiquitination and increased levels of Ku70 and c-FLIPL and to reduced apoptosis induced by HDAC inhibition via stabilization of c-FLIPL and Ku70 and inhibition of caspase 8 activation. Our results have identified novel interactions and novel targets for UBE4B ubiquitin ligase activity and a direct role for the ITCH-UBE4B complex in responses of neuroblastoma cells to HDAC inhibition, suggesting that the ITCH-UBE4B complex plays a critical role in responses of neuroblastoma to therapy and identifying a potential mechanism underlying the association of UBE4B expression with neuroblastoma patient outcomes.


Asunto(s)
Neuroblastoma , Ubiquitina-Proteína Ligasas , Humanos , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Neuroblastoma/patología , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762082

RESUMEN

Neuroblastoma (NB) is a pediatric malignancy originating from neural crest cells of the sympathetic nervous system that accounts for 15% of all pediatric cancer deaths. Despite advances in treatment, high-risk NB remains difficult to cure, highlighting the need for novel therapeutic approaches. Ubiquitin-specific protease 7 (USP7) is a deubiquitinase that plays a critical role in tumor suppression and DNA repair, and USP7 overexpression has been associated with tumor aggressiveness in a variety of tumors, including NB. Therefore, USP7 is a potential therapeutic target for NB. The tumor suppressor p53 is a known target of USP7, and therefore reactivation of the p53 pathway may be an effective therapeutic strategy for NB treatment. We hypothesized that inhibition of USP7 would be effective against NB tumor growth. Using a novel USP7 inhibitor, Almac4, we have demonstrated significant antitumor activity, with significant decreases in both cell proliferation and cell viability in TP53 wild-type NB cell lines. USP7 inhibition in NB cells activated the p53 pathway via USP7 and MDM2 degradation, leading to reduced p53 ubiquitination and increased p53 expression in all sensitive NB cells. In addition, USP7 inhibition led to decreased N-myc protein levels in both MYCN-amplified and -nonamplified NB cell lines, but no correlation was observed between MYCN amplification and treatment response. USP7 inhibition induced apoptosis in all TP53 wild-type NB cell lines. USP7 inhibition also induced EZH2 ubiquitination and degradation. Lastly, the combination of USP7 and MDM2 inhibition showed enhanced efficacy. Our data suggests that USP7 inhibition may be a promising therapeutic strategy for children with high-risk and relapsed NB.


Asunto(s)
Neuroblastoma , Proteína p53 Supresora de Tumor , Niño , Humanos , Apoptosis , Regulación hacia Abajo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Proteína p53 Supresora de Tumor/genética , Peptidasa Específica de Ubiquitina 7/genética
4.
Biochem Pharmacol ; 216: 115751, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37595672

RESUMEN

The RET (REarranged during Transfection) gene, which encodes for a transmembrane receptor tyrosine kinase, is an established oncogene associated with the etiology and progression of multiple types of cancer. Oncogenic RET mutations and rearrangements resulting in gene fusions have been identified in many adult cancers, including medullary and papillary thyroid cancers, lung adenocarcinomas, colon and breast cancers, and many others. While genetic RET aberrations are much less common in pediatric solid tumors, increased RET expression has been shown to be associated with poor prognosis in children with solid tumors such as neuroblastoma, prompting an interest in RET inhibition as a form of therapy for these children. A number of kinase inhibitors currently in use for patients with cancer have RET inhibitory activity, but these inhibitors also display activity against other kinases, resulting in unwanted side effects and limiting their safety and efficacy. Recent efforts have been focused on developing more specific RET inhibitors, but due to high levels of conservation between kinase binding pockets, specificity remains a drug design challenge. Here, we review the background of RET as a potential therapeutic target in neuroblastoma tumors and the results of recent preclinical studies and clinical trials evaluating the safety and efficacy of RET inhibition in adults and children. We also present a novel approach to drug discovery leveraging the chemical phenomenon of atropisomerism to develop specific RET inhibitors and present preliminary data demonstrating the efficacy of a novel RET inhibitor against neuroblastoma tumor cells.


Asunto(s)
Neoplasias Pulmonares , Neuroblastoma , Adulto , Niño , Humanos , Diseño de Fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo
5.
Int J Cancer ; 153(5): 1026-1034, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37246577

RESUMEN

Children with relapsed/refractory (R/R) neuroblastoma (NB) and medulloblastoma (MB) have poor outcomes. We evaluated the efficacy of nifurtimox (Nfx) in a clinical trial for children with R/R NB and MB. Subjects were divided into three strata: first relapse NB, multiply R/R NB, and R/R MB. All patients received Nfx (30 mg/kg/day divided TID daily), Topotecan (0.75 mg/m2 /dose, days 1-5) and Cyclophosphamide (250 mg/m2 /dose, days 1-5) every 3 weeks. Response was assessed after every two courses using International Neuroblastoma Response Criteria and Response Evaluation Criteria in Solid Tumors (RECIST) criteria. One hundred and twelve eligible patients were enrolled with 110 evaluable for safety and 76 evaluable for response. In stratum 1, there was a 53.9% response rate (CR + PR), and a 69.3% total benefit rate (CR + PR + SD), with an average time on therapy of 165.2 days. In stratum 2, there was a 16.3% response rate, and a 72.1% total benefit rate, and an average time on study of 158.4 days. In stratum 3, there was a 20% response rate and a 65% total benefit rate, an average time on therapy of 105.0 days. The most common side effects included bone marrow suppression and reversible neurologic complications. The combination of Nfx, topotecan and cyclophosphamide was tolerated, and the objective response rate plus SD of 69.8% in these heavily pretreated populations suggests that this combination is an effective option for patients with R/R NB and MB. Although few objective responses were observed, the high percentage of stabilization of disease and prolonged response rate in patients with multiply relapsed disease shows this combination therapy warrants further testing.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neuroblastoma , Niño , Humanos , Topotecan/efectos adversos , Nifurtimox/uso terapéutico , Meduloblastoma/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/etiología , Ciclofosfamida , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
6.
Genes Chromosomes Cancer ; 62(6): 313-331, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36680522

RESUMEN

Although induction of differentiation represents an effective strategy for neuroblastoma treatment, the mechanisms underlying neuroblastoma differentiation are poorly understood. We generated a computational model of neuroblastoma differentiation consisting of interconnected gene clusters identified based on symmetric and asymmetric gene expression relationships. We identified a differentiation signature consisting of series of gene clusters comprised of 1251 independent genes that predicted neuroblastoma differentiation in independent datasets and in neuroblastoma cell lines treated with agents known to induce differentiation. This differentiation signature was associated with patient outcomes in multiple independent patient cohorts and validated the role of MYCN expression as a marker of neuroblastoma differentiation. Our results further identified novel genes associated with MYCN via asymmetric Boolean implication relationships that would not have been identified using symmetric computational approaches and that were associated with both neuroblastoma differentiation and patient outcomes. Our differentiation signature included a cluster of genes involved in intracellular signaling and growth factor receptor trafficking pathways that is strongly associated with neuroblastoma differentiation, and we validated the associations of UBE4B, a gene within this cluster, with neuroblastoma cell and tumor differentiation. Our findings demonstrate that Boolean network analyses of symmetric and asymmetric gene expression relationships can identify novel genes and pathways relevant for neuroblastoma tumor differentiation that could represent potential therapeutic targets.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neuroblastoma , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína Proto-Oncogénica N-Myc/uso terapéutico , Línea Celular Tumoral , Diferenciación Celular/genética , Neuroblastoma/patología , Ubiquitina-Proteína Ligasas/genética
7.
Genome Biol ; 23(1): 71, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246212

RESUMEN

BACKGROUND: Neuroblastoma is a pediatric malignancy with a high frequency of metastatic disease at initial diagnosis. Neuroblastoma tumors have few recurrent protein-coding mutations but contain extensive somatic copy number alterations (SCNAs) suggesting that mutations that alter gene dosage are important drivers of tumorigenesis. Here, we analyze allele-specific expression in 96 high-risk neuroblastoma tumors to discover genes impacted by cis-acting mutations that alter dosage. RESULTS: We identify 1043 genes with recurrent, neuroblastoma-specific allele-specific expression. While most of these genes lie within common SCNA regions, many of them exhibit allele-specific expression in copy neutral samples and these samples are enriched for mutations that are predicted to cause nonsense-mediated decay. Thus, both SCNA and non-SCNA mutations frequently alter gene expression in neuroblastoma. We focus on genes with neuroblastoma-specific allele-specific expression in the absence of SCNAs and find 26 such genes that have reduced expression in stage 4 disease. At least two of these genes have evidence for tumor suppressor activity including the transcription factor TFAP2B and the protein tyrosine phosphatase PTPRH. CONCLUSIONS: In summary, our allele-specific expression analysis discovers genes that are recurrently dysregulated by both large SCNAs and other cis-acting mutations in high-risk neuroblastoma.


Asunto(s)
Recurrencia Local de Neoplasia , Neuroblastoma , Alelos , Niño , Variaciones en el Número de Copia de ADN , Genes Supresores de Tumor , Humanos , Recurrencia Local de Neoplasia/genética , Neuroblastoma/genética , Neuroblastoma/patología
8.
Cancer Res ; 81(23): 5818-5832, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610968

RESUMEN

Children with treatment-refractory or relapsed (R/R) tumors face poor prognoses. As the genomic underpinnings driving R/R disease are not well defined, we describe here the genomic and transcriptomic landscapes of R/R solid tumors from 202 patients enrolled in Beat Childhood Cancer Consortium clinical trials. Tumor mutational burden (TMB) was elevated relative to untreated tumors at diagnosis, with one-third of tumors classified as having a pediatric high TMB. Prior chemotherapy exposure influenced the mutational landscape of these R/R tumors, with more than 40% of tumors demonstrating mutational signatures associated with platinum or temozolomide chemotherapy and two tumors showing treatment-associated hypermutation. Immunogenomic profiling found a heterogenous pattern of neoantigen and MHC class I expression and a general absence of immune infiltration. Transcriptional analysis and functional gene set enrichment analysis identified cross-pathology clusters associated with development, immune signaling, and cellular signaling pathways. While the landscapes of these R/R tumors reflected those of their corresponding untreated tumors at diagnosis, important exceptions were observed, suggestive of tumor evolution, treatment resistance mechanisms, and mutagenic etiologies of treatment. SIGNIFICANCE: Tumor heterogeneity, chemotherapy exposure, and tumor evolution contribute to the molecular profiles and increased mutational burden that occur in treatment-refractory and relapsed childhood solid tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos , Evasión Inmune , Mutación , Recurrencia Local de Neoplasia/patología , Neoplasias/patología , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Lactante , Estudios Longitudinales , Masculino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología , Pronóstico , Tasa de Supervivencia , Transcriptoma , Adulto Joven
9.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207315

RESUMEN

Pevonedistat is a neddylation inhibitor that blocks proteasomal degradation of cullin-RING ligase (CRL) proteins involved in the degradation of short-lived regulatory proteins, including those involved with cell-cycle regulation. We determined the sensitivity and mechanism of action of pevonedistat cytotoxicity in neuroblastoma. Pevonedistat cytotoxicity was assessed using cell viability assays and apoptosis. We examined mechanisms of action using flow cytometry, bromodeoxyuridine (BrDU) and immunoblots. Orthotopic mouse xenografts of human neuroblastoma were generated to assess in vivo anti-tumor activity. Neuroblastoma cell lines were very sensitive to pevonedistat (IC50 136-400 nM). The mechanism of pevonedistat cytotoxicity depended on p53 status. Neuroblastoma cells with mutant (p53MUT) or reduced levels of wild-type p53 (p53si-p53) underwent G2-M cell-cycle arrest with rereplication, whereas p53 wild-type (p53WT) cell lines underwent G0-G1 cell-cycle arrest and apoptosis. In orthotopic neuroblastoma models, pevonedistat decreased tumor weight independent of p53 status. Control mice had an average tumor weight of 1.6 mg + 0.8 mg versus 0.5 mg + 0.4 mg (p < 0.05) in mice treated with pevonedistat. The mechanism of action of pevonedistat in neuroblastoma cell lines in vitro appears p53 dependent. However, in vivo studies using mouse neuroblastoma orthotopic models showed a significant decrease in tumor weight following pevonedistat treatment independent of the p53 status. Novel chemotherapy agents, such as the NEDD8-activating enzyme (NAE) inhibitor pevonedistat, deserve further study in the treatment of neuroblastoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Ciclopentanos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Pirimidinas/uso terapéutico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Ciclopentanos/farmacología , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Proteína NEDD8/antagonistas & inhibidores , Proteína NEDD8/metabolismo , Pirimidinas/farmacología , Proteína p53 Supresora de Tumor/metabolismo
10.
Expert Rev Anticancer Ther ; 21(9): 957-974, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34047251

RESUMEN

Introduction: Medulloblastoma, an embryonal small round blue cell tumor primarily arising in the posterior fossa, is the most common malignancy of the central nervous system in children and requires intensive multi-modality therapy for cure. Overall 5-year survival is approximately 75% in children with primary disease, but outcomes for relapsed disease are very poor. Recent advances have identified molecular subgroups with excellent prognosis, with 5-year overall survival rates >90%, and subgroups with very poor prognosis with overall survival rates <50%. Molecular subtyping has allowed for more sophisticated risk stratification of patients, but new treatments for the highest risk patients have not yet improved outcomes. Targeting cancer stem cells may improve outcomes, and several candidate targets and novel drugs are under investigation.Areas covered: We discuss medulloblastoma epidemiology, biology, treatment modalities, risk stratification, and molecular subgroup analysis, links between subgroup and developmental biology, cancer stem cell biology in medulloblastoma including previously described cancer stem cell markers and proposed targeted treatments in the current literature.Expert opinion: The understanding of cancer stem cells in medulloblastoma will advance therapies targeting the most treatment-resistant cells within the tumor and therefore reduce the incidence of treatment refractory and relapsed disease.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neoplasias de Células Germinales y Embrionarias , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/terapia , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/terapia , Células Madre Neoplásicas , Pronóstico
11.
Neurooncol Adv ; 2(1): vdaa062, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32642714

RESUMEN

BACKGROUND: Identifying mechanisms of medulloblastoma recurrence is a key to improving patient survival, and targeting treatment-resistant subpopulations within tumors could reduce disease recurrence. Expression of the granulocyte colony-stimulating factor receptor (G-CSF-R, CD114) is a potential marker of cancer stem cells, and therefore we hypothesized that a subpopulation of medulloblastoma cells would also express CD114 and would demonstrate chemoresistance and responsiveness to G-CSF. METHODS: Prevalence of CD114-positive (CD114+) cells in medulloblastoma cell lines, patient-derived xenograft (PDX) tumors, and primary patient tumor samples were assessed by flow cytometry. Growth rates, chemoresistance, and responses to G-CSF of CD114+ and CD114-negative (CD114-) cells were characterized in vitro using continuous live cell imaging and flow cytometry. Gene expression profiles were compared between CD114+ and CD114- medulloblastoma cells using quantitative RT-PCR. RESULTS: CD114+ cells were identifiable in medulloblastoma cell lines, PDX tumors, and primary patient tumors and have slower growth rates than CD114- or mixed populations. G-CSF accelerates the growth of CD114+ cells, and CD114+ cells are more chemoresistant. The CD114+ population is enriched when G-CSF treatment follows chemotherapy. The CD114+ population also has higher expression of the CSF3R, NRP-1, TWIST1, and MYCN genes. CONCLUSIONS: Our data demonstrate that a subpopulation of CD114+ medulloblastoma cells exists in cell lines and tumors, which may evade traditional chemotherapy and respond to exogenous G-CSF. These properties invite further investigation into the role of G-CSF in medulloblastoma therapy and methods to specifically target these cells.

12.
Pediatr Blood Cancer ; 67(10): e28417, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32729196

RESUMEN

BACKGROUND/OBJECTIVES: Standard supportive care during induction therapy for high-risk neuroblastoma (HR-NBL) includes primary prophylactic granulocyte colony-stimulating factor (G-CSF) aimed at limiting duration of neutropenia, reducing infection risk, and minimizing treatment delays. Preclinical models suggest that G-CSF promotes maintenance of neuroblastoma cancer stem cells and may reduce the efficacy of chemotherapy. This study's objective was to determine the safety and feasibility of administering induction chemotherapy without routine use of prophylactic G-CSF. DESIGN/METHODS: Children with newly diagnosed HR-NBL received six-cycle induction chemotherapy regimen without prophylactic G-CSF in four cycles. G-CSF was administered for stem cell mobilization after cycle 3 and granulocyte-monocyte colony-stimulating factor after cycle 5 prior to surgical resection of primary disease. The primary outcome measure was the incidence of grade 3 or higher infection. We hypothesized that the per patient infection rate would be comparable to our institutional baseline rate of 58% in patients with HR-NBL receiving induction chemotherapy with prophylactic growth factor support. The trial used an A'Hern single-stage design. RESULTS: Twelve patients with HR-NBL received 58 cycles of chemotherapy on study. Three patients completed the entire six-cycle regimen with no infections. Nine patients experienced grade 3 infections (bacteremia four, urinary tract infection two, skin/soft tissue infection three). No patients experienced grade 4 infections or required intensive care treatment for infection. CONCLUSION: A greater than expected number of serious bacterial infections were observed during administration of induction chemotherapy for HR-NBL without primary prophylactic G-CSF. These results support continued prophylactic administration growth factor during induction chemotherapy.


Asunto(s)
Infecciones Bacterianas/prevención & control , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Movilización de Célula Madre Hematopoyética/métodos , Quimioterapia de Inducción/métodos , Neuroblastoma/tratamiento farmacológico , Neutropenia/prevención & control , Adolescente , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Neuroblastoma/patología , Proyectos Piloto , Pronóstico , Estudios Prospectivos , Tasa de Supervivencia , Tiempo de Tratamiento
13.
Int J Mol Sci ; 21(9)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392889

RESUMEN

Neuroblastoma is the most common extracranial solid tumor in childhood. Gain of chromosome 17q material is found in >60% of neuroblastoma tumors and is associated with poor patient prognosis. The NME1 gene is located in the 17q21.3 region, and high NME1 expression is correlated with poor neuroblastoma patient outcomes. However, the functional roles and signaling activity of NME1 in neuroblastoma cells and tumors are unknown. NME1 and NME2 have been shown to possess histidine (His) kinase activity. Using anti-1- and 3-pHis specific monoclonal antibodies and polyclonal anti-pH118 NME1/2 antibodies, we demonstrated the presence of pH118-NME1/2 and multiple additional pHis-containing proteins in all tested neuroblastoma cell lines and in xenograft neuroblastoma tumors, supporting the presence of histidine kinase activity in neuroblastoma cells and demonstrating the potential significance of histidine kinase signaling in neuroblastoma pathogenesis. We have also demonstrated associations between NME1 expression and neuroblastoma cell migration and differentiation. Our demonstration of NME1 histidine phosphorylation in neuroblastoma and of the potential role of NME1 in neuroblastoma cell migration and differentiation suggest a functional role for NME1 in neuroblastoma pathogenesis and open the possibility of identifying new therapeutic targets and developing novel approaches to neuroblastoma therapy.


Asunto(s)
Nucleósido Difosfato Quinasas NM23/metabolismo , Neuroblastoma/mortalidad , Regulación hacia Arriba , Animales , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Niño , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Nucleósido Difosfato Quinasas NM23/genética , Trasplante de Neoplasias , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosforilación , Pronóstico , Transducción de Señal , Análisis de Supervivencia
14.
Invest New Drugs ; 38(6): 1677-1686, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32436058

RESUMEN

Children with aggressive pediatric solid tumors have poor outcomes and novel treatments are needed. Pediatric solid tumors demonstrate aberrant expression and activity of the fibroblast growth factor receptor (FGFR) family, suggesting FGFR inhibitors may be effective therapeutic agents. AZD4547 is a multikinase inhibitor of the FGFR1-3 kinases, and we hypothesized that AZD4547 would be effective in pediatric solid tumor preclinical models. We evaluated the effects of AZD4547 on neuroblastoma, rhabdomyosarcoma, and Ewing sarcoma cells alone and in combination with STAT3 inhibition. Continuous live cell imaging was used to measure induction of apoptosis and effects on migration. Receptor inhibition and intracellular signaling were examined by western blotting. AZD4547 treatment resulted in decreased cell confluence, increased apoptosis and reduced cell migration in all tested cell lines. AZD4547 treatment led to decreased phosphorylation of signaling proteins involved in cell survival and apoptotic pathways and increased phosphorylation of STAT3, and treatment of cell lines with AZD4547 combined with STAT3 inhibition demonstrated increased efficacy. Sensitivity to AZD4547 appears to be mediated by effects on the Ras/MAPK and JAK/STAT pathways, and AZD4547 represents a potential novel therapeutic agent for children with solid tumors.


Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Neoplasias/metabolismo , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Niño , Óxidos S-Cíclicos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
15.
Int J Cancer ; 147(11): 3152-3159, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32391579

RESUMEN

Neuroblastoma is a sympathetic nervous system tumor, primarily presenting in children under 6 years of age. The long-term prognosis for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapy. This report provides an update to a phase II trial evaluating DFMO as maintenance therapy in HRNB. Event-free survival (EFS) and overall survival (OS) of 81 subjects with HRNB treated with standard COG induction, consolidation and immunotherapy followed by 2 years of DFMO on the NMTRC003/003b Phase II trial were compared to a historical cohort of 76 HRNB patients treated at Beat Childhood Cancer Research Consortium (BCC) hospitals who were disease-free after completion of standard upfront therapy and did not receive DFMO. The 2- and 5-year EFS were 86.4% [95% confidence interval (CI) 79.3%-94.2%] and 85.2% [77.8%-93.3%] for the NMTRC003/003b subset vs 78.3% [69.5%-88.3%] and 65.6% [55.5%-77.5%] for the historical control group. The 2- and 5-year OS were 98.8% [96.4-100%] and 95.1% [90.5%-99.9%] vs 94.4% [89.3%-99.9%] and 81.6% [73.0%-91.2%], respectively. DFMO maintenance for HRNB after completion of standard of care therapy was associated with improved EFS and OS relative to historical controls treated at the same institutions. These results support additional investigations into the potential role of DFMO in preventing relapse in HRNB.


Asunto(s)
Eflornitina/administración & dosificación , Neuroblastoma/tratamiento farmacológico , Preescolar , Supervivencia sin Enfermedad , Eflornitina/uso terapéutico , Femenino , Humanos , Quimioterapia de Mantención , Masculino , Pronóstico , Nivel de Atención , Resultado del Tratamiento
16.
Br J Cancer ; 123(4): 568-579, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32457362

RESUMEN

BACKGROUND: Regorafenib is an inhibitor of multiple kinases with aberrant expression and activity in neuroblastoma tumours that have potential roles in neuroblastoma pathogenesis. METHODS: We evaluated neuroblastoma cells treated with regorafenib for cell viability and confluence, and analysed treated cells for apoptosis and cell cycle progression. We evaluated the efficacy of regorafenib in vivo using an orthotopic xenograft model. We evaluated regorafenib-mediated inhibition of kinase targets and performed reverse-phase protein array (RPPA) analysis of neuroblastoma cells treated with regorafenib. Lastly, we evaluated the efficacy and effects of the combination of regorafenib and 13-cis-retinoic acid on intracellular signalling. RESULTS: Regorafenib treatment resulted in reduced neuroblastoma cell viability and confluence, with both induction of apoptosis and of cell cycle arrest. Regorafenib treatment inhibits known receptor tyrosine kinase targets RET and PDGFRß and intracellular signalling through the RAS/MAPK, PI3K/Akt/mTOR and Fos/Jun pathways. Regorafenib is effective against neuroblastoma tumours in vivo, and the combination of regorafenib and 13-cis-retinoic acid demonstrates enhanced efficacy compared with regorafenib alone. CONCLUSIONS: The effects of regorafenib on multiple intracellular signalling pathways and the potential additional efficacy when combined with 13-cis-retinoic acid represent opportunities to develop treatment regimens incorporating regorafenib for children with neuroblastoma.


Asunto(s)
Isotretinoína/administración & dosificación , Neuroblastoma/tratamiento farmacológico , Compuestos de Fenilurea/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación , Piridinas/administración & dosificación , Transducción de Señal/efectos de los fármacos , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Isotretinoína/farmacología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Compuestos de Fenilurea/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Piridinas/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/metabolismo
17.
Pediatr Hematol Oncol ; 37(4): 314-325, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32153233

RESUMEN

Vitamin D deficiency and insufficiency are associated with serious sequelae in childhood cancer survivors. However, data on vitamin D deficiency in children with newly diagnosed cancer are scarce and the role of sociodemographic factors and vitamin D supplementation is largely unknown. We assessed vitamin D status and its socio-demographic and clinical correlates in 163 children with newly diagnosed cancer, using 25-hydroxy vitamin D (25(OH)D) concentrations and assessed longitudinal changes following vitamin D supplementation. Sixty-five percent of the patients with newly diagnosed cancer had low 25(OH)D concentrations. Fifty-two patients (32%) were vitamin D deficient (≤20 ng/mL 25(OH)D concentration), and 53(33%) were insufficient (21-29 ng/mL 25(OH)D concentration). Age over 10 (P = 0.019), Hispanic ethnicity (P = 0.002), and female sex (P = 0.008) were significantly associated with lower 25(OH)D concentration at diagnosis. Vitamin D supplementation resulted in significant increase in 25(OH)D concentrations (P < 0.001). However, following supplementation in the longitudinal analysis, this increase was less pronounced in Hispanic patients vs. non-Hispanic (P = 0.007), and in children with solid tumors vs. hematological malignancies (P = 0.003). Vitamin D deficiency and insufficiency are common in children with newly diagnosed cancer. Hispanic patients, females and older children were at higher risk for vitamin D deficiency and insufficiency. Although supplementation appeared to increase 25(OH)D concentrations over time, this increase was not as pronounced in certain subsets of patients. Prospective trials of the effects of vitamin D supplementation on bone health in children with newly diagnosed cancer are warranted, particularly in Hispanics and patients with solid tumors.


Asunto(s)
Suplementos Dietéticos , Neoplasias , Deficiencia de Vitamina D , Vitamina D/análogos & derivados , Adolescente , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Neoplasias/sangre , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Estudios Retrospectivos , Vitamina D/administración & dosificación , Vitamina D/sangre , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/diagnóstico , Deficiencia de Vitamina D/tratamiento farmacológico
18.
Oncotarget ; 10(59): 6323-6333, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31695841

RESUMEN

Neuroblastoma is the most common extracranial solid tumor of childhood and accounts for 15% of all pediatric cancer-related deaths. New therapies are needed to improve outcomes for children with high-risk and relapsed tumors. Inhibitors of the RET kinase and the RAS-MAPK pathway have previously been shown to be effective against neuroblastoma, suggesting that combined inhibition may have increased efficacy. RXDX-105 is a small molecule inhibitor of multiple kinases, including the RET and BRAF kinases. We found that treatment of neuroblastoma cells with RXDX-105 resulted in a significant decrease in cell viability and proliferation in vitro and in tumor growth and tumor vascularity in vivo. Treatment with RXDX-105 inhibited RET phosphorylation and phosphorylation of the MEK and ERK kinases in neuroblastoma cells and xenograft tumors, and RXDX-105 treatment induced both apoptosis and cell cycle arrest. RXDX-105 also showed enhanced efficacy in combination with 13-cis-retinoic acid, which is currently a component of maintenance therapy for children with high-risk neuroblastoma. Our results demonstrate that RXDX-105 shows promise as a novel therapeutic agent for children with high-risk and relapsed neuroblastoma.

19.
Children (Basel) ; 5(11)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384486

RESUMEN

While recent increases in our understanding of the biology of neuroblastoma have allowed for more precise risk stratification and improved outcomes for many patients, children with high-risk neuroblastoma continue to suffer from frequent disease relapse, and despite recent advances in our understanding of neuroblastoma pathogenesis, the outcomes for children with relapsed neuroblastoma remain poor. These children with relapsed neuroblastoma, therefore, continue to need novel treatment strategies based on a better understanding of neuroblastoma biology to improve outcomes. The discovery of new tumor targets and the development of novel antibody- and cell-mediated immunotherapy agents have led to a large number of clinical trials for children with relapsed neuroblastoma, and additional clinical trials using molecular and genetic tumor profiling to target tumor-specific aberrations are ongoing. Combinations of these new therapeutic modalities with current treatment regimens will likely be needed to improve the outcomes of children with relapsed and refractory neuroblastoma.

20.
Sci Rep ; 8(1): 14445, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262852

RESUMEN

High risk neuroblastoma (HRNB) accounts for 15% of all pediatric cancer deaths. Despite aggressive therapy approximately half of patients will relapse, typically with only transient responses to second-line therapy. This study evaluated the ornithine decarboxylase inhibitor difluoromethylornithine (DFMO) as maintenance therapy to prevent relapse following completion of standard therapy (Stratum 1) or after salvage therapy for relapsed/refractory disease (Stratum 2). This Phase II single agent, single arm multicenter study enrolled from June 2012 to February 2016. Subjects received 2 years of oral DFMO (750 ± 250 mg/m2 twice daily). Event free survival (EFS) and overall survival (OS) were determined on an intention-to-treat (ITT) basis. 101 subjects enrolled on Stratum 1 and 100 were eligible for ITT analysis; two-year EFS was 84% (±4%) and OS 97% (±2%). 39 subjects enrolled on Stratum 2, with a two-year EFS of 54% (±8%) and OS 84% (±6%). DFMO was well tolerated. The median survival time is not yet defined for either stratum. DFMO maintenance therapy for HRNB in remission is safe and associated with high EFS and OS. Targeting ODC represents a novel therapeutic mechanism that may provide a new strategy for preventing relapse in children with HRNB.


Asunto(s)
Eflornitina/administración & dosificación , Quimioterapia de Mantención , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/mortalidad , Preescolar , Supervivencia sin Enfermedad , Eflornitina/efectos adversos , Femenino , Humanos , Masculino , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...