Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400239

RESUMEN

This paper addresses the challenging issue of achieving high spatial resolution in temperature monitoring of printed circuit boards (PCBs) without compromising the operation of electronic components. Traditional methods involving numerous dedicated sensors such as thermocouples are often intrusive and can impact electronic functionality. To overcome this, this study explores the application of ultrasonic guided waves, specifically utilising a limited number of cost-effective and unobtrusive Piezoelectric Wafer Active Sensors (PWAS). Employing COMSOL multiphysics, wave propagation is simulated through a simplified PCB while systematically varying the temperature of both components and the board itself. Machine learning algorithms are used to identify hotspots at component positions using a minimal number of sensors. An accuracy of 97.6% is achieved with four sensors, decreasing to 88.1% when utilizing a single sensor in a pulse-echo configuration. The proposed methodology not only provides sufficient spatial resolution to identify hotspots but also offers a non-invasive and efficient solution. Such advancements are important for the future electrification of the aerospace and automotive industries in particular, as they contribute to condition-monitoring technologies that are essential for ensuring the reliability and safety of electronic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...