Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Heliyon ; 9(5): e16141, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37251846

RESUMEN

Mycoplasma hyopneumoniae causes porcine enzootic pneumonia (PEP), a chronic respiratory disease that leads to severe economic losses in the pig industry. Swine infection and PEP development depend on the adhesion of the pathogen to the swine respiratory tract and the host immune response, but these and other disease determinants are not fully understood. For instance, M. hyopneumoniae has a large repertoire of proteins of unknown function (PUFs) and some of them are abundant in the cell surface, where they likely mediate so far unknown pathogen-host interactions. Moreover, these surface PUFs may undergo endoproteolytic processing to generate larger repertoires of proteoforms to further complicate this scenario. Here, we investigated the five PUFs more represented on the surface of M. hyopneumoniae pathogenic strain 7448 in comparison with their orthologs from the nonpathogenic M. hyopneumoniae J strain and the closely related commensal species Mycoplasma flocculare. Comparative in silico analyses of deduced amino acid sequences and proteomic data identified differential domains, disordered regions and repeated motifs. We also provide evidence of differential endoproteolytic processing and antigenicity. Phylogenetic analyses were also performed with ortholog sequences, showing higher conservation of three of the assessed PUFs among Mycoplasma species related to respiratory diseases. Overall, our data point out to M. hyopneumoniae surface-dominant PUFs likely associated with pathogenicity.

2.
Oncol Lett ; 25(4): 173, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36970608

RESUMEN

Prostate cancer (PCa) is one of the most prevalent types of cancer in men worldwide; however, the main diagnostic tests available for PCa have limitations and a biopsy is required for histopathological confirmation of the disease. Prostate-specific antigen (PSA) is the main biomarker used for the early detection of PCa, but an elevated serum concentration is not cancer-specific. Therefore, there is a need for the discovery of new non-invasive biomarkers that can accurately diagnose PCa. The present study used trichloroacetic acid-induced protein precipitation and liquid chromatography-mass spectrometry to profile endogenous peptides in urine samples from patients with PCa (n=33), benign prostatic hyperplasia (n=25) and healthy individuals (n=28). Receiver operating characteristic curve analysis was performed to evaluate the diagnostic performance of urinary peptides. In addition, Proteasix tool was used for in silico prediction of protease cleavage sites. Five urinary peptides derived from uromodulin were revealed to be significantly altered between the study groups, all of which were less abundant in the PCa group. This peptide panel showed a high potential to discriminate between the study groups, resulting in area under the curve (AUC) values between 0.788 and 0.951. In addition, urinary peptides outperformed PSA in discriminating between malignant and benign prostate conditions (AUC=0.847), showing high sensitivity (81.82%) and specificity (88%). From in silico analyses, the proteases HTRA2, KLK3, KLK4, KLK14 and MMP25 were identified as potentially involved in the degradation of uromodulin peptides in the urine of patients with PCa. In conclusion, the present study allowed the identification of urinary peptides with potential for use as non-invasive biomarkers in PCa diagnosis.

3.
Front Pharmacol ; 13: 931089, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278220

RESUMEN

CYP21A2 deficiency represents 95% of congenital adrenal hyperplasia (CAH) cases, a group of genetic disorders that affect steroid biosynthesis. The genetic and functional analysis provide critical tools to elucidate complex CAH cases. One of the most accessible tools to infer the pathogenicity of new variants is in silico prediction. Here, we analyzed the performance of in silico prediction tools to categorize missense single nucleotide variants (SNVs) of CYP21A2. SNVs of CYP21A2 characterized in vitro by functional assays were selected to assess the performance of online single and meta predictors. SNVs were tested separately or in combination with the related phenotype (severe or mild CAH form). In total, 103 SNVs of CYP21A2 (90 pathogenic and 13 neutral) were used to test the performance of 13 single-predictors and four meta-predictors. All SNVs associated with the severe phenotypes were well categorized by all tools, with an accuracy of between 0.69 (PredictSNP2) and 0.97 (CADD), and Matthews' correlation coefficient (MCC) between 0.49 (PoredicSNP2) and 0.90 (CADD). However, SNVs related to the mild phenotype had more variation, with the accuracy between 0.47 (S3Ds&GO and MAPP) and 0.88 (CADD), and MCC between 0.18 (MAPP) and 0.71 (CADD). From our analysis, we identified four predictors of CYP21A2 variant pathogenicity with good performance, CADD, ConSurf, DANN, and PolyPhen2. These results can be used for future analysis to infer the impact of uncharacterized SNVs in CYP21A2.

4.
Biochimie ; 198: 141-154, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35367578

RESUMEN

Li-Fraumeni and Li-Fraumeni-like syndromes (LFS/LFL) are hereditary cancer predisposition disorders associated with germline mutations in the TP53 tumor suppressor gene. Here, we stably expressed LFS/LFL-associated p53 mutants R337H and G245S in p53-null H1299 cells to study their cellular and molecular effects. Mutant proteins showed distinct oligomerization states and opposing effects on cell proliferation and viability. Stable expression of p53G245S enhanced cell proliferation and spheroid formation, while cells stably expressing p53R337H showed reduced proliferation and clonogenicity, along with increased cell death. Mass spectrometry analysis revealed that proteins whose expression was induced by p53R337H or p53G245S expression were related to distinct metabolic profiles. Proteins upregulated by p53G245S expression were associated with a Warburg phenotype, while proteins upregulated by p53R337H expression were related to oxidative phosphorylation and fatty acid oxidation. Differences in mitochondrial mass and activity between cells stably expressing p53R337H or p53G245S were further corroborated by High Resolution Respirometry, flow cytometry and qPCR assays. The implications of the different oncogenic properties of p53R337H and p53G245S on the clinical manifestation and treatment of LFS/LFL patients carrying these mutations are discussed.


Asunto(s)
Síndrome de Li-Fraumeni , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patología , Redes y Vías Metabólicas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Parasit Vectors ; 15(1): 99, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35313982

RESUMEN

BACKGROUND: Most cystic echinococcosis cases in Southern Brazil are caused by Echinococcus granulosus and Echinococcus ortleppi. Proteomic studies of helminths have increased our knowledge about the molecular survival strategies that are used by parasites. Here, we surveyed the protein content of the hydatid fluid compartment in E. granulosus and E. ortleppi pulmonary bovine cysts to better describe and compare their molecular arsenal at the host-parasite interface. METHODS: Hydatid fluid samples from three isolates of each species were analyzed using mass spectrometry-based proteomics (LC-MS/MS). In silico functional analyses of the identified proteins were performed to examine parasite survival strategies. RESULTS: The identified hydatid fluid protein profiles showed a predominance of parasite proteins compared to host proteins that infiltrate the cysts. We identified 280 parasitic proteins from E. granulosus and 251 from E. ortleppi, including 52 parasitic proteins that were common to all hydatid fluid samples. The in silico functional analysis revealed important molecular functions and processes that are active in pulmonary cystic echinococcosis, such as adhesion, extracellular structures organization, development regulation, signaling transduction, and enzyme activity. CONCLUSIONS: The protein profiles described here provide evidence of important mechanisms related to basic cellular processes and functions that act at the host-parasite interface in cystic echinococcosis. The molecular tools used by E. granulosus and E. ortleppi for survival within the host are potential targets for new therapeutic approaches to treat cystic echinococcosis and other larval cestodiases.


Asunto(s)
Equinococosis Pulmonar , Echinococcus granulosus , Animales , Bovinos , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem
6.
Microb Pathog ; 162: 105344, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34864146

RESUMEN

Mycoplasma hyopneumoniae is a bacterium that inhabits the swine respiratory tract, causing porcine enzootic pneumonia, which generates significant economic losses to the swine industry worldwide. The knowledge on M. hyopneumoniae biology and virulence have been significantly increased by genomics studies. However, around 30% of the predicted proteins remained of unknown function so far. According to the original annotation, the genome of M. hyopneumoniae 7448, a Brazilian pathogenic strain, had 693 coding DNA sequences, 244 of which were annotated as coding for hypothetical or uncharacterized proteins. Among them, there may be still several genes coding for unknown virulence factors. Therefore, this study aimed to functionally reannotate the whole set of 244 M. hyopneumoniae 7448 proteins of unknown function based on currently available database and bioinformatic tools, in order to predict novel potential virulence factors. Predictions of physicochemical properties, subcellular localization, function, overall association to virulence and antigenicity are provided. With that, 159 out of the set of 244 proteins of unknown function had a putative function associated to them, allowing identification of novel enzymes, membrane transporters, lipoproteins, DNA-binding proteins and adhesins. Furthermore, 139 proteins were generally associated to virulence, 14 of which had a function assigned and were differentially expressed between pathogenic and non-pathogenic strains of M. hyopneumoniae. Moreover, all extracellular or cytoplasmic membrane predicted proteins had putative epitopes identified. Overall, these analyses improved the functional annotation of M. hyopneumoniae 7448 genome from 65% to 87% and allowed the identification of new potential virulence factors.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Animales , Proteínas Bacterianas/genética , Mycoplasma hyopneumoniae/genética , Porcinos , Virulencia , Factores de Virulencia/genética
7.
Acta Trop ; 221: 105991, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34089697

RESUMEN

Glutathione transferases (GSTs) belong to a diverse superfamily of multifunctional proteins involved in metabolic detoxification. In helminth parasite, GSTs are particularly relevant since they are also involved in host immunomodulation. Echinococcus granulosus sensu lato (s.l.) is a cestode parasite known to express at least three phylogenetically distant cytosolic GSTs: EgGST1 and EgGST2 previously grouped within Mu and Sigma classes, respectively; and EgGST3 related to both Omega and Sigma classes. To better characterize E. granulosus s.l. GSTs, herein their expression and distribution were assessed in the pre-adult protoscolex (PSC) parasite stage. Potential transcriptional regulatory mechanisms of the corresponding EgGST genes were also explored. Firstly, the transcription of the three EgGSTs was significantly induced during the early stages of the murine model of infection, suggesting a potential role during parasite establishment. EgGST1 was detected in the parenchyma of PSCs and its expression increased after H2O2 exposure, supporting its role in detoxification. EgGST2 was mainly detected on the PSCs tegument, strategically localized for potential immunoregulation functions due to its Sigma-class characteristics. In addition, its expression increased after anthelmintic treatment, suggesting a role in chemotherapy resistance. Finally, the Omega-related EgGST3 was localized throughout the entire PSC body, including suckers and tegument, and since its expression also increased after H2O2 treatment, a potential role in oxidative stress response could also be ascribed. On the other hand, known cis-acting regulatory motifs were detected in EgGST genes, suggesting similar transcription processes to other eukaryotes. The results herein reported provide additional data regarding the roles of EgGSTs in E. granulosus s.l. biology, contributing to a better understanding of its host-parasite interaction.


Asunto(s)
Echinococcus granulosus , Animales , Antihelmínticos , Echinococcus granulosus/genética , Echinococcus granulosus/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Peróxido de Hidrógeno , Ratones , Estrés Oxidativo
8.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008721

RESUMEN

Deficiency of 21-hydroxylase enzyme (CYP21A2) represents 90% of cases in congenital adrenal hyperplasia (CAH), an autosomal recessive disease caused by defects in cortisol biosynthesis. Computational prediction and functional studies are often the only way to classify variants to understand the links to disease-causing effects. Here we investigated the pathogenicity of uncharacterized variants in the CYP21A2 gene reported in Brazilian and Portuguese populations. Physicochemical alterations, residue conservation, and effect on protein structure were accessed by computational analysis. The enzymatic performance was obtained by functional assay with the wild-type and mutant CYP21A2 proteins expressed in HEK293 cells. Computational analysis showed that p.W202R, p.E352V, and p.R484L have severely impaired the protein structure, while p.P35L, p.L199P, and p.P433L have moderate effects. The p.W202R, p.E352V, p.P433L, and p.R484L variants showed residual 21OH activity consistent with the simple virilizing phenotype. The p.P35L and p.L199P variants showed partial 21OH efficiency associated with the non-classical phenotype. Additionally, p.W202R, p.E352V, and p.R484L also modified the protein expression level. We have determined how the selected CYP21A2 gene mutations affect the 21OH activity through structural and activity alteration contributing to the future diagnosis and management of CYP21A2 deficiency.


Asunto(s)
Genética de Población , Mutación/genética , Esteroide 21-Hidroxilasa/genética , Adolescente , Secuencia de Aminoácidos , Brasil , Preescolar , Simulación por Computador , Secuencia Conservada , Femenino , Humanos , Lactante , Cinética , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Portugal , Reproducibilidad de los Resultados , Esteroide 21-Hidroxilasa/química
9.
Cancer Diagn Progn ; 1(3): 235-243, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35399307

RESUMEN

Background: Drug resistance is the main cause of therapy failure in advanced lung cancer. Although non-genetic mechanisms play important roles in tumor chemoresistance, drug-induced epigenetic reprogramming is still poorly understood. Materials and Methods: The A549 cell line was used to generate cells with non-genetic resistance to cisplatin (CDDP), namely A549/CDDP cells. Bioorthogonal non-canonical amino acid tagging (BONCAT) and mass spectrometry were used to identify proteins modulated by CDDP in A549 and A549/CDDP cells. Results: Proteins related to proteostasis, telomere maintenance, cell adhesion, cytoskeletal remodeling, and cell redox homeostasis were found enriched in both cell lines upon CDDP exposure. On the other hand, proteins involved in drug response, metabolic pathways and mRNA processing and splicing were up-regulated by CDDP only in A549/CDDP cells. Conclusion: Our study revealed proteome dynamics involved in the non-genetic response to CDDP, pointing out potential targets to monitor and overcome epigenetic resistance in lung cancer.

10.
Virulence ; 11(1): 1600-1622, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33289597

RESUMEN

Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative "omics" results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.


Asunto(s)
Interacciones Huésped-Patógeno , Mycoplasma hyopneumoniae/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mycoplasma hyopneumoniae/genética , Neumonía Porcina por Mycoplasma/microbiología , Neumonía Porcina por Mycoplasma/fisiopatología , Porcinos , Virulencia
11.
Anticancer Res ; 40(10): 5509-5516, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32988874

RESUMEN

BACKGROUND/AIM: Extracellular vesicles (EVs) can mediate drug resistance within the tumor microenvironment by delivering bioactive molecules, including proteins. Here, we performed a comparative proteomic analysis of EVs secreted by A549 lung cancer cells and their cisplatin-resistant counterparts in order to identify proteins involved in drug resistance. MATERIALS AND METHODS: Cells were co-cultivated using a transwell system to evaluate EV exchange. EVs were isolated by ultracentrifugation and analyzed using microscopy and nanoparticle tracking. EV proteome was analyzed by mass spectrometry. RESULTS: EV-mediated communication was observed between co-cultured A549 and A549/CDDP cells. EVs isolated from both cells were mainly exosome-like structures. Extracellular matrix components, cell adhesion proteins, complement factors, histones, proteasome subunits and membrane transporters were found enriched in the EVs released by cisplatin-resistant cells. CONCLUSION: Proteins identified in this work may have a relevant role in modulating the chemosensitivity of the recipient cells and could represent useful biomarkers to monitor cisplatin response in lung cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Cisplatino/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proteoma/genética , Células A549 , Cisplatino/efectos adversos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Exosomas/efectos de los fármacos , Exosomas/genética , Vesículas Extracelulares/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Espectrometría de Masas , Proteómica/métodos , Microambiente Tumoral/efectos de los fármacos
12.
Sci Rep ; 10(1): 13707, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792522

RESUMEN

Mycoplasma hyopneumoniae is the most costly pathogen for swine production. Although several studies have focused on the host-bacterium association, little is known about the changes in gene expression of swine cells upon infection. To improve our understanding of this interaction, we infected swine epithelial NPTr cells with M. hyopneumoniae strain J to identify differentially expressed mRNAs and miRNAs. The levels of 1,268 genes and 170 miRNAs were significantly modified post-infection. Up-regulated mRNAs were enriched in genes related to redox homeostasis and antioxidant defense, known to be regulated by the transcription factor NRF2 in related species. Down-regulated mRNAs were enriched in genes associated with cytoskeleton and ciliary functions. Bioinformatic analyses suggested a correlation between changes in miRNA and mRNA levels, since we detected down-regulation of miRNAs predicted to target antioxidant genes and up-regulation of miRNAs targeting ciliary and cytoskeleton genes. Interestingly, most down-regulated miRNAs were detected in exosome-like vesicles suggesting that M. hyopneumoniae infection induced a modification of the composition of NPTr-released vesicles. Taken together, our data indicate that M. hyopneumoniae elicits an antioxidant response induced by NRF2 in infected cells. In addition, we propose that ciliostasis caused by this pathogen is partially explained by the down-regulation of ciliary genes.


Asunto(s)
Antioxidantes/metabolismo , Proteínas Bacterianas/metabolismo , Cilios/genética , Células Epiteliales/metabolismo , Mycoplasma hyopneumoniae/genética , Mycoplasma hyopneumoniae/metabolismo , Neumonía Porcina por Mycoplasma/microbiología , Animales , Proteínas Bacterianas/genética , Biomarcadores/análisis , Células Cultivadas , Cilios/metabolismo , Células Epiteliales/microbiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , MicroARNs/análisis , Mycoplasma hyopneumoniae/crecimiento & desarrollo , Neumonía Porcina por Mycoplasma/genética , Neumonía Porcina por Mycoplasma/metabolismo , ARN Mensajero/análisis , Porcinos
13.
J Proteomics ; 228: 103939, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32798775

RESUMEN

Mesocestoides corti (syn. vogae) is a useful model for developmental studies of platyhelminth parasites of the Cestoda class, such as Taenia spp. or Echinococcus spp. It has been used in studies to characterize cestode strobilation, i.e. the development of larvae into adult worms. So far, little is known about the initial molecular events involved in cestode strobilation and, therefore, we carried out a study to characterize newly synthesized (NS) proteins upon strobilation induction. An approach based on bioorthogonal noncanonical amino acid tagging and mass spectrometry was used to label, isolate, identify, and quantify NS proteins in the initial steps of M. corti strobilation. Overall, 121 NS proteins were detected exclusively after induction of strobilation, including proteins related to development pathways, such as insulin and notch signaling. Metabolic changes that take place in the transition from the larval stage to adult worm were noted in special NS protein subsets related to developmental processes, such as focal adhesion, cell leading edge, and maintenance of location. The data shed light on mechanisms underlying early steps of cestode strobilation and enabled identification of possible developmental markers. We also consider the use of developmental responsive proteins as potential drug targets for developing novel anthelmintics. BIOLOGICAL SIGNIFICANCE: Larval cestodiases are life-threatening parasitic diseases that affect both man and domestic animals worldwide. Cestode parasites present complex life cycles, in which they undergo major morphological and physiological changes in the transition from one life-stage to the next. One of these transitions occurs during cestode strobilation, when the mostly undifferentiated and non-segmented larval or pre-adult form develops into a fully segmented and sexually differentiated (strobilated) adult worm. Although the proteomes of bona fide larvae and strobialted adults have been previously characterized for a few cestode species, little is still known about the dynamic of protein synthesis during the early steps of cestode strobilation. Now, the assessment of newly synthesized (NS) proteins within the first 48 h of strobilation the model cestode M. corti allowed to shed light on molecular mechanisms that are triggered by strobilation induction. The functional analyses of this repertoire of over a hundred NS proteins pointed out to changes in metabolism and activation of classical developmental signaling pathways in early strobilation. Many of the identified NS proteins may become valuable cestode developmental markers and their involvement in vital processes make them also good candidate targets for novel anthelmintic drugs.


Asunto(s)
Cestodos , Mesocestoides , Parásitos , Animales , Estadios del Ciclo de Vida , Proteoma
14.
BMC Genomics ; 21(1): 487, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32677885

RESUMEN

BACKGROUND: Cestoda is a class of endoparasitic worms in the flatworm phylum (Platyhelminthes). During the course of their evolution cestodes have evolved some interesting aspects, such as their increased reproductive capacity. In this sense, they have serial repetition of their reproductive organs in the adult stage, which is often associated with external segmentation in a developmental process called strobilation. However, the molecular basis of strobilation is poorly understood. To assess this issue, an evolutionary comparative study among strobilated and non-strobilated flatworm species was conducted to identify genes and proteins related to the strobilation process. RESULTS: We compared the genomic content of 10 parasitic platyhelminth species; five from cestode species, representing strobilated parasitic platyhelminths, and five from trematode species, representing non-strobilated parasitic platyhelminths. This dataset was used to identify 1813 genes with orthologues that are present in all cestode (strobilated) species, but absent from at least one trematode (non-strobilated) species. Development-related genes, along with genes of unknown function (UF), were then selected based on their transcriptional profiles, resulting in a total of 34 genes that were differentially expressed between the larval (pre-strobilation) and adult (strobilated) stages in at least one cestode species. These 34 genes were then assumed to be strobilation related; they included 12 encoding proteins of known function, with 6 related to the Wnt, TGF-ß/BMP, or G-protein coupled receptor signaling pathways; and 22 encoding UF proteins. In order to assign function to at least some of the UF genes/proteins, a global gene co-expression analysis was performed for the cestode species Echinococcus multilocularis. This resulted in eight UF genes/proteins being predicted as related to developmental, reproductive, vesicle transport, or signaling processes. CONCLUSIONS: Overall, the described in silico data provided evidence of the involvement of 34 genes/proteins and at least 3 developmental pathways in the cestode strobilation process. These results highlight on the molecular mechanisms and evolution of the cestode strobilation process, and point to several interesting proteins as potential developmental markers and/or targets for the development of novel antihelminthic drugs.


Asunto(s)
Cestodos/crecimiento & desarrollo , Cestodos/genética , Animales , Cestodos/clasificación , Cestodos/metabolismo , Evolución Molecular , Perfilación de la Expresión Génica , Genes de Helminto , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Filogenia
15.
Pathogens ; 9(6)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545493

RESUMEN

Echinococcus granulosus has a complex life cycle involving two mammalian hosts. The transition from one host to another is accompanied by changes in gene expression, and the transcriptional events that underlie this transition have not yet been fully characterized. In this study, RNA-seq was used to compare the transcription profiles of samples from E. granulosus protoscoleces induced in vitro to strobilar development at three time points. We identified 818 differentially expressed genes, which were divided into eight expression clusters formed over the entire 24 h period. An enrichment of gene transcripts with molecular functions of signal transduction, enzymes, and protein modifications was observed upon induction and developmental progression. This transcriptomic study provides insights for understanding the complex life cycle of E. granulosus and contributes for searching for the key genes correlating with the strobilar development, which can be used to identify potential candidates for the development of anthelmintic drugs.

16.
Sci Rep ; 9(1): 15876, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685918

RESUMEN

Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus granulosus. The parasite is well adapted to its host by producing protective molecules that modulate host immune response. An unexplored issue associated with the parasite's persistence in its host is how the organism can survive the oxidative stress resulting from parasite endogenous metabolism and host defenses. Here, we used hydrogen peroxide (H2O2) to induce oxidative stress in E. granulosus protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H2O2 exposure. Using proteomics, we identified 550 unique proteins; including 474 in H2O2-exposed PSCs (H-PSCs) samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reductase, were detected after H2O2 exposure. Increased concentrations of caspase-3 and cathepsin-D proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to early apoptosis were also induced. We present data that describe proteins expressed in response to oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential application to treatment and prevention of CHD.


Asunto(s)
Echinococcus granulosus/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Caspasa 3/metabolismo , Catepsina D/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Echinococcus granulosus/crecimiento & desarrollo , Glutatión Transferasa/metabolismo , Proteínas del Helminto/metabolismo , Larva/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica/métodos , Regulación hacia Arriba/efectos de los fármacos
17.
Parasitol Res ; 118(10): 2843-2855, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31401657

RESUMEN

The eukaryotic initiation factor 4E (eIF4E) specifically recognizes the 5' mRNA cap, a rate-limiting step in the translation initiation process. Although the 7-methylguanosine cap (MMGcap) is the most common 5' cap structure in eukaryotes, the trans-splicing process that occurs in several organism groups, including nematodes and flatworms, leads to the addition of a trimethylguanosine cap (TMGcap) to some RNA transcripts. In some helminths, eIF4E can have a dual capacity to bind both MMGcap and TMGcap. In the present work, we evaluated the distribution of eIF4E protein sequences in platyhelminths and we showed that only one gene coding for eIF4E is present in most parasitic flatworms. Based on this result, we cloned the Echinococcus granulosus cDNA sequence encoding eIF4E in Escherichia coli, expressed the recombinant eIF4E as a fusion protein to GST, and tested its ability to capture mRNAs through the 5' cap using pull-down assay and qPCR. Our results indicate that the recombinant eIF4E was able to bind preferentially 5'-capped mRNAs compared with rRNAs from total RNA preparations of E. granulosus. By qPCR, we observed an enrichment in MMG-capped mRNA compared with TMG-capped mRNAs among Eg-eIF4E-GST pull-down RNAs. Eg-eIF4E structural model using the Schistosoma mansoni eIF4E as template showed to be well preserved with only a few differences between chemically similar amino acid residues at the binding sites. These data showed that E. granulosus eIF4E can be used as a potential tool to study full-length 5'-capped mRNA, besides being a potential drug target against parasitic flatworms.


Asunto(s)
Echinococcus granulosus/genética , Factor 4E Eucariótico de Iniciación/genética , Caperuzas de ARN/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/genética , Regulación de la Expresión Génica/genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Simulación del Acoplamiento Molecular , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
18.
PLoS Negl Trop Dis ; 12(5): e0006473, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29727452

RESUMEN

BACKGROUND: Cystic hydatid disease is a zoonosis caused by the larval stage (hydatid) of Echinococcus granulosus (Cestoda, Taeniidae). The hydatid develops in the viscera of intermediate host as a unilocular structure filled by the hydatid fluid, which contains parasitic excretory/secretory products. The lipoprotein Antigen B (AgB) is the major component of E. granulosus metacestode hydatid fluid. Functionally, AgB has been implicated in immunomodulation and lipid transport. However, the mechanisms underlying AgB functions are not completely known. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated AgB interactions with different mammalian cell types and the pathways involved in its internalization. AgB uptake was observed in four different cell lines, NIH-3T3, A549, J774 and RH. Inhibition of caveolae/raft-mediated endocytosis causes about 50 and 69% decrease in AgB internalization by RH and A549 cells, respectively. Interestingly, AgB colocalized with the raft endocytic marker, but also showed a partial colocalization with the clathrin endocytic marker. Finally, AgB colocalized with an endolysosomal tracker, providing evidence for a possible AgB destination after endocytosis. CONCLUSIONS/SIGNIFICANCE: The results indicate that caveolae/raft-mediated endocytosis is the main route to AgB internalization, and that a clathrin-mediated entry may also occur at a lower frequency. A possible fate for AgB after endocytosis seems to be the endolysosomal system. Cellular internalization and further access to subcellular compartments could be a requirement for AgB functions as a lipid carrier and/or immunomodulatory molecule, contributing to create a more permissive microenvironment to metacestode development and survival.


Asunto(s)
Antígenos Helmínticos/metabolismo , Equinococosis/parasitología , Echinococcus granulosus/metabolismo , Endocitosis , Proteínas del Helminto/metabolismo , Animales , Línea Celular , Equinococosis/fisiopatología , Echinococcus granulosus/genética , Humanos , Ratones
19.
Mol Microbiol ; 108(6): 683-696, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29624763

RESUMEN

Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia. In our previous work, we reconstructed the metabolic models of this species along with two other mycoplasmas from the respiratory tract of swine: Mycoplasma hyorhinis, considered less pathogenic but which nonetheless causes disease and Mycoplasma flocculare, a commensal bacterium. We identified metabolic differences that partially explained their different levels of pathogenicity. One important trait was the production of hydrogen peroxide from the glycerol metabolism only in the pathogenic species. Another important feature was a pathway for the metabolism of myo-inositol in M. hyopneumoniae. Here, we tested these traits to understand their relation to the different levels of pathogenicity, comparing not only the species but also pathogenic and attenuated strains of M. hyopneumoniae. Regarding the myo-inositol metabolism, we show that only M. hyopneumoniae assimilated this carbohydrate and remained viable when myo-inositol was the primary energy source. Strikingly, only the two pathogenic strains of M. hyopneumoniae produced hydrogen peroxide in complex medium. We also show that this production was dependent on the presence of glycerol. Although further functional tests are needed, we present in this work two interesting metabolic traits of M. hyopneumoniae that might be directly related to its enhanced virulence.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Inositol/metabolismo , Mycoplasma hyopneumoniae/metabolismo , Mycoplasma hyopneumoniae/patogenicidad , Neumonía Porcina por Mycoplasma/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mycoplasma hyopneumoniae/genética , Especificidad de la Especie , Porcinos , Virulencia
20.
BMC Evol Biol ; 18(1): 10, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390964

RESUMEN

BACKGROUND: Universal stress proteins (USPs) are present in all domains of life. Their expression is upregulated in response to a large variety of stress conditions. The functional diversity found in this protein family, paired with the sequence degeneration of the characteristic ATP-binding motif, suggests a complex evolutionary pattern for the paralogous USP-encoding genes. In this work, we investigated the origin, genomic organization, expression patterns and evolutionary history of the USP gene family in species of the phylum Platyhelminthes. RESULTS: Our data showed a cluster organization, a lineage-specific distribution, and the presence of several pseudogenes among the USP gene copies identified. The absence of a well conserved -CCAATCA- motif in the promoter region was positively correlated with low or null levels of gene expression, and with amino acid changes within the ligand binding motifs. Despite evidence of the pseudogenization of various USP genes, we detected an important functional divergence at several residues, mostly located near sites that are critical for ligand interaction. CONCLUSIONS: Our results provide a broad framework for the evolution of the USP gene family, based on the emergence of new paralogs that face very contrasting fates, including pseudogenization, subfunctionalization or neofunctionalization. This framework aims to explain the sequence and functional diversity of this gene family, providing a foundation for future studies in other taxa in which USPs occur.


Asunto(s)
Evolución Molecular , Proteínas de Choque Térmico/genética , Platelmintos/genética , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Animales , Duplicación de Gen , Regulación de la Expresión Génica , Variación Genética , Proteínas de Choque Térmico/química , Modelos Moleculares , Familia de Multigenes , Motivos de Nucleótidos/genética , Filogenia , Seudogenes , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...