Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioinspir Biomim ; 19(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305303

RESUMEN

The field of animal-robot and organism-robot interaction systems (ARIS, ORIS) is a currently rapidly emerging field in biorobotics. In this special issue we aim for providing a comprehensive overview of the cutting-edge advancements and pioneering breakthroughs within this scientific and engineering discipline. Therefore, we collected scientific articles that delineate and expound upon the complexity of these remarkable biohybrid systems. These configurations stand as engineered conduits, facilitating the accurate investigation and profound exploration of the multifaceted interactions between robotic devices and biological entities, including various fish species, honeybees and plants. Also the human factor plays a role in this collection, as we also include a philosophical perspective on such systems as well as an augmented reality setup that brings humans into the loop with living fish. Within our editorial purview, we categorize the scientific contributions based on their focal points, differentiating between examinations of singular agent-to-agent interactions, extensions to the social stratum, and further expansions to the intricate levels of swarm dynamics, colonies, populations, and ecosystems. Considering potential applications, we delve into the multifaceted domains wherein these biohybrid systems might be applied. This discourse culminates in a tentative glimpse into the future trajectories these technologies might traverse, elucidating their promising prospects for both scientific advancement and societal enrichment. In sum, this special issue aims at facilitating the convergence of diverse insights, at encapsulating the richness of the ARIS and ORIS domain, and at charting a course toward the untapped prospects lying at the nexus of biology and robotics.


Asunto(s)
Robótica , Animales , Humanos , Abejas , Biología , Ecosistema
2.
Front Bioeng Biotechnol ; 9: 612605, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34109162

RESUMEN

We develop here a novel hypothesis that may generate a general research framework of how autonomous robots may act as a future contingency to counteract the ongoing ecological mass extinction process. We showcase several research projects that have undertaken first steps to generate the required prerequisites for such a technology-based conservation biology approach. Our main idea is to stabilise and support broken ecosystems by introducing artificial members, robots, that are able to blend into the ecosystem's regulatory feedback loops and can modulate natural organisms' local densities through participation in those feedback loops. These robots are able to inject information that can be gathered using technology and to help the system in processing available information with technology. In order to understand the key principles of how these robots are capable of modulating the behaviour of large populations of living organisms based on interacting with just a few individuals, we develop novel mathematical models that focus on important behavioural feedback loops. These loops produce relevant group-level effects, allowing for robotic modulation of collective decision making in social organisms. A general understanding of such systems through mathematical models is necessary for designing future organism-interacting robots in an informed and structured way, which maximises the desired output from a minimum of intervention. Such models also help to unveil the commonalities and specificities of the individual implementations and allow predicting the outcomes of microscopic behavioural mechanisms on the ultimate macroscopic-level effects. We found that very similar models of interaction can be successfully used in multiple very different organism groups and behaviour types (honeybee aggregation, fish shoaling, and plant growth). Here we also report experimental data from biohybrid systems of robots and living organisms. Our mathematical models serve as building blocks for a deep understanding of these biohybrid systems. Only if the effects of autonomous robots onto the environment can be sufficiently well predicted can such robotic systems leave the safe space of the lab and can be applied in the wild to be able to unfold their ecosystem-stabilising potential.

3.
Bioinspir Biomim ; 15(3): 036005, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31971516

RESUMEN

Numerous nature inspired algorithms have been suggested to enable robotic swarms, mobile sensor networks and other multi-agent systems to exhibit various self-organized behaviors. Swarm intelligence and swarm robotics research have been underway for a few decades and have produced many such algorithms based on natural self-organizing systems. While a large body of research exists for variations and modifications in swarm intelligence algorithms, there have been few attempts to unify the underlying agent level design of these widely varying behaviors. In this work, a design paradigm for a swarm of agents is presented which can exhibit a wide range of collective behaviors at swarm level while using minimalistic single-bit communication at the agent level. The communication in the proposed paradigm is based on waves of 'ping'-signals inspired by strategies for communication and self organization of slime mold (Dictyostelium discoideum) and fireflies (lampyridae). The unification of common collective behaviors through this Wave Oriented Swarm Paradigm (WOSP) enables the control of swarms with minimalistic communication and yet allowing the emergence of diverse complex behaviors. It is demonstrated both in simulation and using real robotic experiments that even a single-bit communication channel between agents suffices for the design of a substantial set of behaviors. Ultimately, the reader will be enabled to combine different behaviours based on the paradigm to develop a control scheme for individual swarms.


Asunto(s)
Técnicas Biosensibles/instrumentación , Dictyostelium/fisiología , Luciérnagas/fisiología , Robótica/instrumentación , Algoritmos , Animales , Conducta Animal , Simulación por Computador , Diseño de Equipo
4.
J R Soc Interface ; 16(156): 20190238, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31362616

RESUMEN

Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.


Asunto(s)
Materiales de Construcción , Robótica , Remodelación Urbana , Ciudades
5.
Bioinspir Biomim ; 14(5): 056006, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31298225

RESUMEN

Self-assembly in biology is an inspiration for engineered large-scale multi-modular systems with desirable characteristics, such as robustness, scalability, and adaptivity. Previous works have shown that simple mobile robots can be used to emulate and study self-assembly behaviors. However, many of these studies were restricted to rather static and inflexible aggregations in predefined shapes, and were limited in adaptivity compared to that observed in nature. We propose a photomorphogenesis approach for robots using our vascular morphogenesis model-a light-stimuli directed method for multi-robot self-assembly inspired by the tissue growth of trees. Robots in the role of 'leaves' collect a virtual resource that is proportional to a real, sensed environmental feature. This is then used to build a virtual underlying network that shares a common resource throughout the whole robot aggregate and determines where it grows or shrinks as a reaction to the dynamic environment. In our approach the robots use supplemental bioinspired models to collectively select a leading robot to decide who starts to self-assemble (and where), or to assemble static aggregations. The robots then use our vascular morphogenesis model to aggregate in a directed way preferring bright areas, hence resembling natural phototropism (growth towards light). Our main result is that the assembled robots are adaptive and able to react to dynamic environments by collectively and autonomously rearranging the aggregate, discarding outdated parts, and growing new ones. In representative experiments, the self-assembling robots collectively make rational decisions on where to grow. Cutting off parts of the aggregate triggers a self-organizing repair process in the robots, and the parts regrow. All these capabilities of adaptivity, collective decision-making, and self-repair in our robot self-assembly originate directly from self-organized behavior of the vascular morphogenesis model. Our approach opens up opportunities for self-assembly with reconfiguration on short time-scales with high adaptivity of dynamic forms and structures.


Asunto(s)
Toma de Decisiones , Luz , Morfogénesis/efectos de la radiación , Robótica , Animales , Antozoos/anatomía & histología , Conducta Animal/fisiología , Biomimética , Insectos/fisiología , Plantas/efectos de la radiación
6.
J Vis Exp ; (149)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31305517

RESUMEN

Robot systems are actively researched for manipulation of natural plants, typically restricted to agricultural automation activities such as harvest, irrigation, and mechanical weed control. Extending this research, we introduce here a novel methodology to manipulate the directional growth of plants via their natural mechanisms for signaling and hormone distribution. An effective methodology of robotic stimuli provision can open up possibilities for new experimentation with later developmental phases in plants, or for new biotechnology applications such as shaping plants for green walls. Interaction with plants presents several robotic challenges, including short-range sensing of small and variable plant organs, and the controlled actuation of plant responses that are impacted by the environment in addition to the provided stimuli. In order to steer plant growth, we develop a group of immobile robots with sensors to detect the proximity of growing tips, and with diodes to provide light stimuli that actuate phototropism. The robots are tested with the climbing common bean, Phaseolus vulgaris, in experiments having durations up to five weeks in a controlled environment. With robots sequentially emitting blue light-peak emission at wavelength 465 nm-plant growth is successfully steered through successive binary decisions along mechanical supports to reach target positions. Growth patterns are tested in a setup up to 180 cm in height, with plant stems grown up to roughly 250 cm in cumulative length over a period of approximately seven weeks. The robots coordinate themselves and operate fully autonomously. They detect approaching plant tips by infrared proximity sensors and communicate via radio to switch between blue light stimuli and dormant status, as required. Overall, the obtained results support the effectiveness of combining robot and plant experiment methodologies, for the study of potentially complex interactions between natural and engineered autonomous systems.


Asunto(s)
Luz , Phaseolus/crecimiento & desarrollo , Desarrollo de la Planta/efectos de la radiación , Robótica , Estimulación Luminosa
7.
R Soc Open Sci ; 5(10): 180296, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30473806

RESUMEN

Plant growth is a self-organized process incorporating distributed sensing, internal communication and morphology dynamics. We develop a distributed mechatronic system that autonomously interacts with natural climbing plants, steering their behaviours to grow user-defined shapes and patterns. Investigating this bio-hybrid system paves the way towards the development of living adaptive structures and grown building components. In this new application domain, challenges include sensing, actuation and the combination of engineering methods and natural plants in the experimental set-up. By triggering behavioural responses in the plants through light spectra stimuli, we use static mechatronic nodes to grow climbing plants in a user-defined pattern at a two-dimensional plane. The experiments show successful growth over periods up to eight weeks. Results of the stimuli-guided experiments are substantially different from the control experiments. Key limitations are the number of repetitions performed and the scale of the systems tested. Recommended future research would investigate the use of similar bio-hybrids to connect construction elements and grow shapes of larger size.

8.
Bioinspir Biomim ; 10(6): 066005, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26501169

RESUMEN

In this paper, a distributed adaptive partitioning algorithm inspired by division of labor in honeybees is investigated for its applicability in a swarm of underwater robots in one hand and is qualitatively compared with the behavior of honeybee colonies on the other hand. The algorithm, partitioning social inhibition (PSI), is based on local interactions and uses a simple logic inspired from age-polyethism and task allocation in honeybee colonies. The algorithm is analyzed in simulation and is successfully applied here to partition a swarm of underwater robots into groups demonstrating its adaptivity to changes and applicability in real world systems. In a turn towards the inspiration origins of the algorithm, three honeybee colonies are then studied for age-polyethism behaviors and the results are contrasted with a simulated swarm running the PSI algorithm. Similar effects are detected in both the biological and simulated swarms suggesting biological plausibility of the mechanisms employed by the artificial system.


Asunto(s)
Abejas/fisiología , Biomimética/instrumentación , Conducta Cooperativa , Inhibición Psicológica , Robótica/instrumentación , Conducta Social , Algoritmos , Animales , Conducta Animal/fisiología , Biomimética/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Conducta Alimentaria/fisiología , Robótica/métodos
9.
Artif Life ; 20(3): 319-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24730765

RESUMEN

A controller of biological or artificial organism (e.g., in bio-inspired cellular robots) consists of a number of processes that drive its dynamics. For a system of processes to perform as a successful controller, different properties can be mentioned. One of the desirable properties of such a system is the capability of generating sufficiently diverse patterns of outputs and behaviors. A system with such a capability is potentially adaptable to perform complicated tasks with proper parameterizations and may successfully reach the solution space of behaviors from the point of view of search and evolutionary algorithms. This article aims to take an early step toward exploring this capability at the levels of individuals and populations by introducing measures of diversity generation and by evaluating the influence of different types of processes on diversity generation. A reaction-diffusion-based controller called the artificial homeostatic hormone system (AHHS) is studied as a system consisting of different processes with various domains of functioning (e.g., internal or external to the control unit). Various combinations of these processes are investigated in terms of diversity generation at levels of both individuals and populations, and the effects of the processes are discussed representing different influences for the processes. A case study of evolving a multimodular AHHS controller with all the various process combinations is also investigated, representing the relevance of the diversity generation measures and practical scenarios.


Asunto(s)
Inteligencia Artificial , Vida , Algoritmos , Difusión , Homeostasis
10.
Chaos Solitons Fractals ; 50(100): 100-114, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23805030

RESUMEN

Swarm systems are based on intermediate connectivity between individuals and dynamic neighborhoods. In natural swarms self-organizing principles bring their agents to that favorable level of connectivity. They serve as interesting sources of inspiration for control algorithms in swarm robotics on the one hand, and in modular robotics on the other hand. In this paper we demonstrate and compare a set of bio-inspired algorithms that are used to control the collective behavior of swarms and modular systems: BEECLUST, AHHS (hormone controllers), FGRN (fractal genetic regulatory networks), and VE (virtual embryogenesis). We demonstrate how such bio-inspired control paradigms bring their host systems to a level of intermediate connectivity, what delivers sufficient robustness to these systems for collective decentralized control. In parallel, these algorithms allow sufficient volatility of shared information within these systems to help preventing local optima and deadlock situations, this way keeping those systems flexible and adaptive in dynamic non-deterministic environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...