Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioimpacts ; 14(4): 30150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104618

RESUMEN

Introduction: Computational studies were performed to investigate the unknown status of endosomal and cell surface receptors in SARS-CoV-2 infection. The interactions between Toll-like receptors (TLRs)- 4/7/8/9 or ACE2 receptor and different SARS-CoV-2 variants were investigated. Methods: The RNA motifs for TLR7, TLR8 and a CpG motif for TLR9 were analyzed in different variants. Molecular docking and molecular dynamics (MD) simulations were performed to investigate receptor-ligand interactions. Results: The number of motifs recognized by TLR7/8/9 in the Alpha, Delta and Iranian variants was lower than in the wild type (WT). Docking analysis revealed that the Alpha, Delta and some Iranian spike variants had a higher affinity for ACE2 and TLR4 than the WT, which may account for their higher transmission rate. The MD simulation also showed differences in stability and structure size between the variants and the WT, indicating potential variations in viral load. Conclusion: It appears that Alpha and some Iranian isolates are the variants of concern due to their higher transmissibility and rapid spread. The Delta mutant is also a variant of concern, not only because of its closer interaction with ACE2, but also with TLR4. Our results emphasize the importance of ACE2 and TLR4, rather than endosomal TLRs, in mediating the effects of different viral mutations and suggest their potential therapeutic applications.

2.
Mol Biochem Parasitol ; 260: 111645, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908801

RESUMEN

Pebrine disease, caused by Nosema bombycis (N. bombycis), is the most important pathogen known to the silk industry. Historical evidence from several countries shows that the outbreaks of pebrine disease have largely caused the decline of the sericulture industry. Prevention is the first line to combat pebrine as a deadly disease in silkworm; however, no effective treatment has yet been presented to treat the disease. Many different methods have been used for detection of pebrine disease agent. This review focuses on the explanation and comparison of these methods, and describes their advantages and/or disadvantages. Also, it highlights the ongoing advances in diagnostic methods for N. bombycis that could enable efforts to halt this microsporidia infection. The detection methods are categorized as microscopic, immunological and nucleic acid-based approaches, each with priorities over the other methods; however, the suitability of each method depends on the available equipment in the laboratory, the mass of infection, and the speed and sensitivity of detection. The accessibility and economic efficiency are compared as well as the speed and the sensitivity for each method. Although, the light microscopy is the most common method for detection of N. bombycis, qPCR is the most preferred method for large data based on speed and sensitivity as well as early detection ability.

3.
Gene ; 927: 148703, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885817

RESUMEN

Cellular proteins and the mRNAs that encode them are key factors in oocyte and sperm development, and the mechanisms that regulate their translation and degradation play an important role during early embryogenesis. There is abundant evidence that expression of microRNAs (miRNAs) is crucial for embryo development and are highly involved in regulating translation during oocyte and early embryo development. MiRNAs are a group of short (18-24 nucleotides) non-coding RNA molecules that regulate post-transcriptional gene silencing. The miRNAs are secreted outside the cell by embryos during preimplantation embryo development. Understanding regulatory mechanisms involving miRNAs during gametogenesis and embryogenesis will provide insights into molecular pathways active during gamete formation and early embryo development. This review summarizes recent findings regarding multiple roles of miRNAs in molecular signaling, plus their transport during gametogenesis and embryo preimplantation.


Asunto(s)
Desarrollo Embrionario , MicroARNs , Técnicas Reproductivas Asistidas , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Desarrollo Embrionario/genética , Animales , Oocitos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Gametogénesis/genética , Masculino
4.
Biol Reprod ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753882

RESUMEN

Melatonin is a hormone mainly secreted by the pineal gland during the circadian cycle, with low levels during the daytime and prominent levels during the night. It is involved in numerous physiological functions including the immune system, circadian rhythm, reproduction, fertilization, and embryo development. In addition, melatonin exerts anti-inflammatory and antioxidant effects inside the body by scavenging reactive oxygen and reactive nitrogen species, increasing antioxidant defenses, and blocking the transcription factors of pro-inflammatory cytokines. Its protective activity has been reported to be effective in various reproductive biotechnological processes, including in vitro maturation, embryo development, and survival rates. In this comprehensive review, our objective is to summarize and debate the potential mechanism and impact of melatonin on oocyte maturation and embryo development through various developmental routes in different mammalian species.

5.
Toxicon ; 242: 107707, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38579983

RESUMEN

This research presents the synthesis and characterization of Cu-doped Fe3O4 (Cu-Fe3O4) nanoparticles as a magnetically recoverable and reusable detoxifying agent for the efficient and long-lasting neutralization of bacterial toxins. The nanoparticles were synthesized using the combustion synthesis method and characterized through SEM, XRD, BET, TGA, and VSM techniques. The detoxification potential of Cu-Fe3O4 was compared with traditional formaldehyde (FA) in detoxifying epsilon toxin (ETx) from Clostridium perfringens Type D, the causative agent of enterotoxemia in ruminants. In vivo residual toxicity tests revealed that Cu-Fe3O4 could detoxify ETx at a concentration of 2.0 mg mL-1 within 4 days at room temperature (RT) and 2 days at 37 °C, outperforming FA (12 and 6 days at RT and 37 °C, respectively). Characterization studies using dynamic light scattering (DLS) and circular dichroism (CD) highlighted lower conformational changes in Cu-Fe3O4-detoxified ETx compared to FA-detoxified ETx. Moreover, Cu-Fe3O4-detoxified ETx exhibited exceptional storage stability at 4 °C and RT for 6 months, maintaining an irreversible structure with no residual toxicity. The particles demonstrated remarkable reusability, with the ability to undergo five continuous detoxification batches. This study provides valuable insights into the development of an efficient and safe detoxifying agent, enabling the production of toxoids with a native-like structure. The magnetically recoverable and reusable nature of Cu-Fe3O4 nanoparticles offers practical advantages for easy recovery and reuse in detoxification reactions.


Asunto(s)
Toxinas Bacterianas , Cobre , Formaldehído , Formaldehído/química , Cobre/química , Animales , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidad , Clostridium perfringens , Nanopartículas de Magnetita/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...