Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Geobiology ; 21(1): 133-150, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36259453

RESUMEN

Arctic marine biodiversity is undergoing rapid changes due to global warming and modifications of oceanic water masses circulation. These changes have been demonstrated in the case of mega- and macrofauna, but much less is known about their impact on the biodiversity of smaller size organisms, such as foraminifera that represent a main component of meiofauna in the Arctic. Several studies analyzed the distribution and diversity of Arctic foraminifera. However, all these studies are based exclusively on the morphological identification of specimens sorted from sediment samples. Here, we present the first assessment of Arctic foraminifera diversity based on metabarcoding of sediment DNA samples collected in fjords and open sea areas in the Svalbard Archipelago. We obtained a total of 5,968,786 reads that represented 1384 amplicon sequence variants (ASVs). More than half of the ASVs (51.7%) could not be assigned to any group in the reference database suggesting a high genetic novelty of Svalbard foraminifera. The sieved and unsieved samples resolved comparable communities, sharing 1023 ASVs, comprising over 97% of reads. Our analyses show that the foraminiferal assemblage differs between the localities, with communities distinctly separated between fjord and open sea stations. Each locality was characterized by a specific assemblage, with only a small overlap in the case of open sea areas. Our study demonstrates a clear pattern of the influence of water masses on the structure of foraminiferal communities. The stations situated on the western coast of Svalbard that are strongly influenced by warm and salty Atlantic water (AW) are characterized by much higher diversity than stations in the northern and eastern part, where the impact of AW is less pronounced. This high diversity and specificity of Svalbard foraminifera associated with water mass distribution indicate that the foraminiferal metabarcoding data can be very useful for inferring present and past environmental conditions in the Arctic.


Asunto(s)
Foraminíferos , Foraminíferos/genética , Foraminíferos/química , Sedimentos Geológicos/química , Agua , Svalbard , Biodiversidad
2.
Geobiology ; 19(6): 631-641, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34143930

RESUMEN

Norwegian fjords have been recently recognized as hot spots for carbon burial due to the large amounts of terrestrial organic matter delivered to fjord sediments, as well as the high sediment accumulation rates. Here, we present the first data on the contribution of benthic foraminiferal inorganic carbon to the sediments of three Norwegian fjords. Our study shows that calcareous foraminifera, which are among the most abundant calcifying organisms in the modern global oceans, can constitute between 15% and 33% of inorganic carbon accumulated in the sediments of the two studied southern Norwegian fjords (Raunefjorden and Hjeltefjorden). In a northern Norwegian fjord (Balsfjorden), the contribution of calcareous foraminifera to the inorganic carbon pool is smaller (<1%) than the one observed in southern fjords. We also found that the amount of foraminifera-derived carbon is primarily dependent on the species composition of the foraminifera community. Large calcareous foraminifera species, despite a lower number of individuals, constitute, on average, 13%-29% of the inorganic carbon in the two southern Norwegian fjords, while the contribution of small, highly abundant species does not exceed 4% of the inorganic carbon pools in the sediments. Calcareous foraminifera species that are indicative of dysoxic conditions have been found to have low inorganic carbon contents per specimen compared to other analysed similar-sized calcareous foraminifera species. This relationship most likely exists due to the thin test walls of these foraminifera species, which may facilitate gas exchange. The results of our case study suggest that the climate-driven formation of near-bottom low-oxygen zones may lead to the dominance of foraminifera associated with dysoxic conditions and, in consequence, to the decrease of foraminifera-derived inorganic carbon. However, to properly analyse the contribution of carbon from thin-walled foraminifera to the sedimentary carbon pool, further studies analysing a broader range of these species is needed.


Asunto(s)
Foraminíferos , Carbono , Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos , Humanos
3.
Mar Pollut Bull ; 165: 112150, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33621902

RESUMEN

Neuston samples were collected with a Manta trawl in the rim of the Arctic Ocean, in the Northern Atlantic Ocean and the Baltic Sea at eleven coastal and open-sea locations. All samples contained plastics identified by FTIR microscopy. Altogether, 110 microplastics pieces were classified according to size, shape, and polymer type. The concentrations at the locations were generally low (x̅ = 0.06, SD ± 0.04 particles m-3) as compared to previous observations. The highest concentrations were found towards the Arctic Ocean, while those in the Baltic Sea were generally low. The most abundant polymer type was polyethylene. Detected particle types were mainly fragments. The number of films and fibers was very low. The mean particle size was 2.66 mm (SD ± 1.55 mm). Clustering analyses revealed that debris compositions in the sea regions had characteristic differences possibly reflecting the dependences between compositions, drifting distances, sinking rates, and local oceanographic conditions.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Regiones Árticas , Océano Atlántico , Países Bálticos , Monitoreo del Ambiente , Mar del Norte , Contaminantes Químicos del Agua/análisis
4.
Sci Rep ; 10(1): 15102, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934321

RESUMEN

Deciphering the evolution of marine plankton is typically based on the study of microfossil groups. Cryptic speciation is common in these groups, and large intragenomic variations occur in ribosomal RNA genes of many morphospecies. In this study, we correlated the distribution of ribosomal amplicon sequence variants (ASVs) with paleoceanographic changes by analyzing the high-throughput sequence data assigned to Neogloboquadrina pachyderma in a 140,000-year-old sediment core from the Arctic Ocean. The sedimentary ancient DNA demonstrated the occurrence of various N. pachyderma ASVs whose occurrence and dominance varied through time. Most remarkable was the striking appearance of ASV18, which was nearly absent in older sediments but became dominant during the last glacial maximum and continues to persist today. Although the molecular ecology of planktonic foraminifera is still poorly known, the analysis of their intragenomic variations through time has the potential to provide new insight into the evolution of marine biodiversity and may lead to the development of new and important paleoceanographic proxies.


Asunto(s)
Biodiversidad , ADN Antiguo/análisis , Foraminíferos/crecimiento & desarrollo , Foraminíferos/genética , Variación Genética , Genómica/métodos , Sedimentos Geológicos/análisis , Regiones Árticas , Evolución Molecular , Foraminíferos/clasificación , Fósiles , Paleografía , Filogenia
5.
Sci Rep ; 10(1): 15667, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973239

RESUMEN

The Younger Dryas (YD) is recognized as a cool period that began and ended abruptly during a time of general warming at the end of the last glacial. New multi-proxy data from a sediment gravity core from Storfjordrenna (western Barents Sea, 253 m water depth) reveals that the onset of the YD occurred as a single short-lived dramatic environment deterioration, whereas the subsequent warming was oscillatory. The water masses in the western Barents Sea were likely strongly stratified at the onset of the YD, possibly due to runoff of meltwater combined with perennial sea-ice cover, the latter may last up to several decades without any brake-up. Consequently, anoxic conditions prevailed at the bottom of Storfjordrenna, leading to a sharp reduction of benthic biota and the appearance of vivianite microconcretions which formation is favoured by reducing conditions. While the anoxic conditions in Storfjordrenna were transient, the unfavorable conditions for benthic foraminifera lasted for c. 1300 years. We suggest that the Pre-Boreal Oscillation, just after the onset of the Holocene, may have been a continuation of the oscillatory warming trend during the YD.

6.
Data Brief ; 30: 105553, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32346576

RESUMEN

Environmental DNA (eDNA) is usually defined as genetic material obtained directly from environmental samples, such as soil, water, or ice. Coupled to DNA metabarcoding, eDNA is a powerful tool in biodiversity assessments. Results from eDNA approach provided valuable insights to the studies of past and contemporary biodiversity in terrestrial and aquatic environments. However, the state and fate of eDNA are still investigated and the knowledge about the form of eDNA (i.e., extracellular vs. intracellular) or the DNA degradation under different environmental conditions is limited. Here, we tackle this issue by analyzing foraminiferal sedimentary DNA (sedDNA) from different size fractions of marine sediments: >500 µm, 500-100 µm, 100-63 µm, and < 63 µm. Surface sediment samples were collected at 15 sampling stations located in the Svalbard archipelago. Sequences of the foraminifera-specific 37f region were generated using Illumina technology. The presented data may be used as a reference for a wide range of eDNA-based studies, including biomonitoring and biodiversity assessments across time and space.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...