Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102063

RESUMEN

Herein, we report the synthesis of a modular family of novel bimetallic tetraamidodiamine (tada) ligands, Li4-R-tada (R = Me3Si, tBuMe2Si, and iPr3Si). These silylamido ligands display two distinct binding pockets whose steric profiles can be easily tuned by choice of the substituents on silicon. We also show that salt metathesis is a convenient route to install these new ligands on the early transition metals titanium(IV) and vanadium(III).

2.
Chemistry ; : e202402702, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121347

RESUMEN

Thiol-disulfide interchange has been an active field of study for biochemists and physical organic chemists alike due to its prevalence within biological systems and fundamentally interesting dynamic nature. More recently, efforts have been made to harness the power of this reversible reaction to make self-assembling systems of macrocyclic and cage-like molecules. However, less effort has focused on the fundamental study of isolating these assemblies and analyzing the factors that control the assembly and sorting of these emerging cyclic systems. We have shown previously that pnictogen-assisted self-assembly enables formation of discrete disulfide macrocycles and cages without competition from polymer formation for a wide variety of alkyl thiols. Herein we report the expansion of these methods to form disulfide macrocycles from aryl thiol containing ligands, allowing access to previously unreported molecules. More importantly, the development of this new self-assembly chemistry allows for a comparison of aryl vs alkyl disulfide exchange and self-assembly. These studies complement classical physical organic and chemical biology studies on the kinetics and thermodynamics of aryl thiol oxidation to disulfides, and we show that this self-assembly method revises some prevailing wisdom from these key classical studies by providing new product distributions and new isolable products in cyclic disulfide formation.

3.
J Am Chem Soc ; 146(28): 19489-19498, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38975622

RESUMEN

High oxidation state metal cations in the form of oxides, oxoanions, or oxoperoxoanions have diverse roles in carbon dioxide removal (direct air capture and point source). Features include providing basic oxygens for chemisorption reactions, direct binding of carbonate, and catalyzing low-temperature CO2 release to regenerate capture media. Moreover, metal oxides and aqueous metal-oxo species are stable in harsh, point-source conditions. Here, we demonstrate aqueous niobium polyoxometalate (POM) carbon capture ability, specifically [Nb6O19]8-, Nb6. Upon exposure of aqueous Nb6 to CO2, Nb6 fragments and binds chemisorbed carbonate, evidenced by crystallization of Nb-carbonate POMs including [Nb22O53(CO3)16]28-and [Nb10O25(CO3)6]12-. While Rb/Cs+ counter cations yield crystal structures to understand the chemisorption processes, K+ counter cations enable higher capture efficiency (based on CO3/Nb ratio), determined by CHN analysis and thermogravimetry-mass spectrometry of the isolated solids. Sum frequency generation spectroscopy also showed higher carbon capture efficiency of the K-Nb6 solutions at the air-water interface, while small-angle X-ray scattering (SAXS) provided insights into the role of the alkalis in influencing these processes. Tetramethylammonium counter cations, like K+, demonstrate high efficiency of carbonate chemisorption at the interface, but SAXS and Raman of the bulk showed a predominance of a Nb24-POM (HxNb24O72, x ∼ 9) that does not bind carbonate. Control experiments show that carbonate detected at the interface is Nb-bound, and the Nb-carbonate species are stabilized by alkalis, demonstrating their supporting role in aqueous Nb-POM CO2 chemisorption. Of fundamental importance, this study presents rare examples of directing POM speciation with a gas, instead of liquid phase acid or base.

4.
J Am Chem Soc ; 146(31): 21999-22007, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39044627

RESUMEN

Persulfides (RSS-) are ubiquitous source of sulfides (S2-) in biology, and interactions between RSS- and bioinorganic metal centers play critical roles in biological hydrogen sulfide (H2S) biogenesis, signaling, and catabolism. Here, we report the use of contact-ion stabilized [Na(15-crown-5)][tBuSS] (1) as a simple synthon to access rare metal alkyl persulfide complexes and to investigate the reactivity of RSS- with transition metal centers to provide insights into metal thiolate persulfidation, including the fundamental difference between alkyl persulfides and alkyl thiolates. Reaction of 1 with [CoII(TPA)(OTf)]+ afforded the η1-alkyl persulfide complex [CoII(TPA)(SStBu)]+ (2), which was characterized by X-ray crystallography, UV-vis spectroscopy, and Raman spectroscopy. RSS- coordination to the Lewis acidic Co2+ center provided additional stability to the S-S bond, as evidenced by a significant increase in the Raman stretching frequency for 2 (vS-S = 522 cm-1, ΔvS-S = 66 cm-1). The effect of persulfidation on metal center redox potentials was further elucidated using cyclic voltammetry, in which the Co2+ → Co3+ oxidation potential of 2 (Ep,a = +89 mV vs SCE) is lowered by nearly 700 mV when compared to the corresponding thiolate complex [CoII(TPA)(StBu)]+ (3) (Ep,a = +818 mV vs SCE), despite persulfidation being generally seen as an oxidative post-translational modification. The reactivity of 2 toward reducing agents including PPh3, BH4-, and biologically relevant thiol reductant DTT led to different S2- output pathways, including formation of a dinuclear 2Co-2SH complex [CoII2(TPA)2(µ2-SH)2]2+(4).

5.
ACS Infect Dis ; 10(7): 2419-2442, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862127

RESUMEN

ELQ-300 is a potent antimalarial drug with activity against blood, liver, and vector stages of the disease. A prodrug, ELQ-331, exhibits reduced crystallinity and improved in vivo efficacy in preclinical testing, and currently, it is in the developmental pipeline for once-a-week dosing for oral prophylaxis against malaria. Because of the high cost of developing a new drug for human use and the high risk of drug failure, it is prudent to have a back-up plan in place. Here we describe ELQ-596, a member of a new subseries of 3-biaryl-ELQs, with enhanced potency in vitro against multidrug-resistant Plasmodium falciparum parasites. ELQ-598, a prodrug of ELQ-596 with diminished crystallinity, is more effective vs murine malaria than its progenitor ELQ-331 by 4- to 10-fold, suggesting that correspondingly lower doses could be used to protect and cure humans of malaria. With a longer bloodstream half-life in mice compared to its progenitor, ELQ-596 highlights a novel series of next-generation ELQs with the potential for once-monthly dosing for protection against malaria infection. Advances in the preparation of 3-biaryl-ELQs are presented along with preliminary results from experiments to explore key structure-activity relationships for drug potency, selectivity, pharmacokinetics, and safety.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Quinolonas , Antimaláricos/farmacología , Antimaláricos/química , Antimaláricos/farmacocinética , Animales , Plasmodium falciparum/efectos de los fármacos , Ratones , Quinolonas/farmacología , Quinolonas/química , Quinolonas/farmacocinética , Malaria/tratamiento farmacológico , Malaria/prevención & control , Humanos , Profármacos/farmacología , Profármacos/química , Profármacos/farmacocinética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Femenino , Relación Estructura-Actividad
6.
Angew Chem Int Ed Engl ; 63(20): e202401823, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38386798

RESUMEN

Mechanically interlocked molecules (MIMs) represent an exciting yet underexplored area of research in the context of carbon nanoscience. Recently, work from our group and others has shown that small carbon nanotube fragments-[n]cycloparaphenylenes ([n]CPPs) and related nanohoop macrocycles-may be integrated into mechanically interlocked architectures by leveraging supramolecular interactions, covalent tethers, or metal-ion templates. Still, available synthetic methods are typically difficult and low yielding, and general methods that allow for the creation of a wide variety of these structures are limited. Here we report an efficient route to interlocked nanohoop structures via the active template Cu-catalyzed azide-alkyne cycloaddition (AT-CuAAC) reaction. With the appropriate choice of substituents, a macrocyclic precursor to 2,2'-bipyridyl embedded [9]CPP (bipy[9]CPP) participates in the AT-CuAAC reaction to provide [2]rotaxanes in near-quantitative yield, which can then be converted into the fully π-conjugated catenane structures. Through this approach, two nanohoop[2]catenanes are synthesized which consist of a bipy[9]CPP catenated with either Tz[10]CPP or Tz[12]CPP (where Tz denotes a 1,2,3-triazole moiety replacing one phenylene ring in the [n]CPP backbone).

7.
Inorg Chem ; 63(6): 3057-3062, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38286007

RESUMEN

H2S is a physiologically important signaling molecule with complex roles in biology and exists primarily as HS- at physiological pH. Despite this anionic character, few investigations have focused on the molecular recognition and reversible binding of this important biological anion. Using a series of imidazole and imidazolium host molecules, we investigate the role of preorganization and charge on HS- binding. Using a macrocyclic bis-imidazolium receptor, we demonstrate the unexpected 2:1 host-guest binding of HS-, which was characterized both in solution and by X-ray crystallography. To the best of our knowledge, this is the first example of this binding stoichiometry for HS- binding. Moreover, the short C-H···S distances of 2.53, 2.54, 2.76, and 2.79 Å are well within the sum of the van der Waals radii of the interacting atoms, which is consistent with strong C-H···S interactions.

8.
Chemistry ; 30(5): e202303490, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930279

RESUMEN

Cycloparaphenylenes (CPPs) are the smallest possible armchair carbon nanotubes, the properties of which strongly depend on their ring size. They can be further tuned by either peripheral functionalization or by replacing phenylene rings for other aromatic units. Here we show how four novel donor-acceptor chromophores were obtained by incorporating fluorenone or 2-(9H-fluoren-9-ylidene)malononitrile into the loops of two differently sized CPPs. Synthetically, we managed to perform late-stage functionalization of the fluorenone-based rings by high-yielding Knoevenagel condensations. The structures were confirmed by X-ray crystallographic analyses, which revealed that replacing a phenylene for a fused-ring-system acceptor introduces additional strain. The donor-acceptor characters of the CPPs were supported by absorption and fluorescence spectroscopic studies, electrochemical studies (displaying the CPPs as multi-redox systems undergoing reversible or quasi-reversible redox events), as well as by computations. The oligophenylene parts were found to comprise the electron donor units of the macrocycles and the fluorenone parts the acceptor units.

9.
J Org Chem ; 88(21): 15516-15522, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37852231

RESUMEN

Several phosphaquinolinone derivatives have been synthesized and characterized to explore their usefulness in the realm of cell imaging. Solution-state photophysical properties in both aqueous and organic solutions were collected for these derivatives. Additionally, CCK-8 cell viability assays and fluorescent imaging in HeLa cells incubated with the new heterocyclic derivatives show evidence of favorable cell permeability, cell viability, and moderate intracellular localization when appended with the well-known morpholine targeting motif.


Asunto(s)
Colorantes Fluorescentes , Agua , Humanos , Estructura Molecular , Células HeLa , Ionóforos , Concentración de Iones de Hidrógeno
10.
Chem Sci ; 14(37): 10273-10279, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37772108

RESUMEN

Hydrosulfide (HS-) is the conjugate base of gasotransmitter hydrogen sulfide (H2S) and is a physiologically-relevant small molecule of great interest in the anion sensing community. However, selective sensing and molecular recognition of HS- in water remains difficult because, in addition to the diffuse charge and high solvation energy of anions, HS- is highly nucleophilic and readily oxidizes into other reactive sulfur species. Moreover, the direct placement of HS- in the Hofmeister series remains unclear. Supramolecular host-guest interactions provide a promising platform on which to recognize and bind hydrosulfide, and characterizing the placement of HS- in the Hofmeister series would facilitate the future design of selective receptors for this challenging anion. Few examples of supramolecular HS- binding have been reported, but the Sindelar group reported HS- binding in water using bambus[6]uril macrocycles in 2018. We used this HS- binding platform as a starting point to develop a chemically-sensitive field effect transistor (ChemFET) to facilitate assigning HS- to a specific place in the Hofmeister series. Specifically, we prepared dodeca-n-butyl bambus[6]uril and incorporated it into a ChemFET as the HS- receptor motif. The resultant device provided an amperometric response to HS-, and we used this device to measure the response of other anions, including SO42-, F-, Cl-, Br-, NO3-, ClO4-, and I-. Using this response data, we were able to experimentally determine that HS- lies between Cl- and Br- in the Hofmeister series, which matches recent theoretical computational work that predicted a similar placement. Taken together, these results highlight the potential of using molecular recognition coupled with ChemFET architectures to develop new approaches for direct and reversible HS- detection and measurement in water and further advance our understanding of different recognition approaches for this challenging anion.

11.
J Am Chem Soc ; 145(24): 13435-13443, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294127

RESUMEN

Reactive sulfur species (RSS) and reactive selenium species (RSeS) play integral roles in hydrogen sulfide (H2S) and hydrogen selenide (H2Se) biological signaling pathways, and dichalcogenide anions are proposed transient intermediates that facilitate a variety of biochemical transformations. Herein we report the selective synthesis, isolation, spectroscopic and structural characterization, and fundamental reactivity of persulfide (RSS-), perselenide (RSeSe-), thioselenide (RSSe-), and selenosulfide (RSeS-) anions. The isolated chalcogenides do not rely on steric protection for stability and have steric profiles analogous to cysteine (Cys). Simple reduction of S8 or Se by potassium benzyl thiolate (KSBn) or selenolate (KSeBn) in the presence of 18-crown-6 afforded [K(18-crown-6)][BnSS] (1), [K(18-crown-6)][BnSeSe] (2), [K(18-crown-6][BnSSe] (3), and [K(18-crown-6][BnSeS] (4). The chemical structure of each dichalcogenide was confirmed by X-ray crystallography and solution-state 1H, 13C, and 77Se NMR spectroscopy. To advance our understanding of the reactivity of these species, we demonstrated that reduction of 1-4 by PPh3 readily generates E═PPh3 (E: S, Se), and reduction of 1, 3, and 4 by DTT readily produces HE-/H2E. Furthermore, 1-4 react with CN- to produce ECN-, which is consistent with the detoxifying effects of dichalcogenide intermediates in the Rhodanese enzyme. Taken together, this work provides new insights into the inherent structural and reactivity characteristics of dichalcogenides relevant to biology and advances our understanding of the fundamental properties of these reactive anions.

12.
Chemistry ; 29(40): e202301153, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37146211

RESUMEN

Fusion of aromatic subunits to stabilize an antiaromatic core allows the isolation and study of otherwise unstable paratropic systems. A complete study of a series of six naphthothiophene-fused s-indacene isomers is herein described. Additionally, the structural modifications resulted in increased π-π overlap in the solid state, which was further explored through changing the sterically blocking mesityl group to (triisopropylsilyl)ethynyl in three derivatives. The computed antiaromaticity of the six isomers is compared to the observed physical properties, such as NMR chemical shift, UV-vis, and CV data. We find that the calculations predict the most antiaromatic isomer and give a general estimation of the relative degree of paratropicity for the remaining isomers, when compared to the experimental results.

13.
Chemistry ; 29(33): e202300668, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-36880222

RESUMEN

Deriving diverse compound libraries from a single substrate in high yields remains to be a challenge in cycloparaphenylene chemistry. In here, a strategy for the late-stage functionalization of shape-persistent alkyne-containing cycloparaphenylene has been explored using readily available azides. The copper-free [3+2]azide-alkyne cycloaddition provided high yields (>90 %) in a single reaction step. Systematic variation of the azides from electron-rich to -deficient shines light on how peripheral substitution influences the characteristics of the resulting adducts. We find that among the most affected properties are the molecular shape, the oxidation potential, excited state features, and affinities towards different fullerenes. Joint experimental and theoretical results are presented including calculations with the state-of-the-art, artificial intelligence-enhanced quantum mechanical method 1 (AIQM1).


Asunto(s)
Azidas , Química Clic , Química Clic/métodos , Azidas/química , Inteligencia Artificial , Alquinos/química , Reacción de Cicloadición , Catálisis
14.
Chemistry ; 29(19): e202203918, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36623258

RESUMEN

The phosphaquinolinone scaffold has been previously studied as a modular core for a variety of fluorescent species where use of substituent effects has focused on increasing or decreasing electron density in the core rings. We now report the synthesis and analysis of several pyridine-containing phosphaquinolinone species exhibiting notable linear conjugation from the aryl-substituent to electron-withdrawing pyridyl nitrogen. Varying the nature of the aryl substituent from electron-withdrawing to electron-donating leads to the generation of an internal charge-transfer (ICT) band in the absorbance spectrum, which becomes the dominant absorbance in terms of intensity in the most electron-rich -NMe2 example. This heterocycle exhibits improved photophysical properties compared to others in the set including high quantum yield and considerably red-shifted emission. The enhanced ICT can be observed in the X-ray data where a rare example of molecule co-planarity is observed. Computational data show increased localization of negative charge on the pyridyl nitrogen as the electron-donating character of the aryl-substituent increases.

15.
Nat Chem ; 15(2): 170-176, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36635600

RESUMEN

Mechanically interlocked carbon nanostructures represent a relatively unexplored frontier in carbon nanoscience due to the difficulty in preparing these unusual topological materials. Here we illustrate an active-template method in which a [n]cycloparaphenylene precursor macrocycle is decorated with two convergent pyridine donors that coordinate to a metal ion. The metal ion catalyses alkyne-alkyne cross-coupling reactions within the central cavity of the macrocycle, and the resultant interlocked products can be converted into fully π-conjugated structures in subsequent synthetic steps. Specifically, we report the synthesis of a family of catenanes that comprise two or three mutually interpenetrating [n]cycloparaphenylene-derived macrocycles of various sizes. Additionally, a fully π-conjugated [3]rotaxane was synthesized by the same method. The development of synthetic methods to access mechanically interlocked carbon nanostructures of varying topology can help elucidate the implications of mechanical bonding for this emerging class of nanomaterials and allow structure-property relationships to be established.

16.
Dalton Trans ; 51(38): 14563-14567, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36074723

RESUMEN

The [PhB(tBuIm)3]1- ligand has gained increased attention since it was first reported in 2006 due to its ability to stabilize highly reactive first row transition metal complexes. In this work, we investigate the coordination chemistry of this ligand with redox-inert zinc to understand how a zinc metal center behaves in such a strong coordinating environment. The PhB(tBuIm)3ZnCl (1) complex can be formed via deprotonation of [PhB(tBuIm)3][OTf]2 followed by the addition of ZnCl2. Salt metathesis reaction with nucleophilic n-BuLi yields the highly carbon-rich zinc coordination complex PhB(tBuIm)3ZnBu (2) with three carbene atom donors and one carbanion donor. In contrast, reaction of complex 1 with a less nucleophilic polysulfide reagent, [K.18-C-6]2[S4], leads to the formation of a tetrahedral zinc tetrasulfido complex via protonation of one carbene donor to form PhB(tBuIm)2(tBuImH)Zn(κ2-S4) (3).

17.
J Am Chem Soc ; 144(33): 15324-15332, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35929817

RESUMEN

Reactive sulfur species (RSS) play critical roles in diverse chemical environments. Molecules containing sulfane sulfur (S0) have emerged as key species involved in cellular redox buffering as well as RSS generation, translocation, and action. Using cucurbit[7]uril (CB[7]) as a model hydrophobic host, we demonstrate here that S8 can be encapsulated to form a 1:1 host guest complex, which was confirmed by solution state experiments, mass spectrometry, and X-ray crystallography. The solid state structure of CB[7]/S8 shows that the encapsulated S8 is available to nucleophiles through the carbonyl portals of the host. Treatment of CB[7]/S8 with thiols results in efficient reduction of S8 to H2S in water at physiological pH. We establish that encapsulated S8 is attacked by a thiol within the CB[7] host and that the resultant soluble hydropolysulfide is ejected into solution, where it reacts further with thiols to generate soluble sulfane sulfur carriers and ultimately H2S. The formation of these intermediate is supported by observed kinetic saturation behavior, competitive inhibition experiments, and alkylative trapping experiments. We also demonstrate that CB[7]/S8 can be used to increase sulfane sulfur levels in live cells using fluorescence microscopy. More broadly, this work suggests a general activation mechanism of S8 by hydrophobic motifs, which may be applicable to proteins, membranes, or other bimolecular compartments that could transiently bind and solubilize S8 to promote reaction with thiols to solubilize and shuttle S8 back into the redox labile sulfane sulfur pool. Such a mechanism would provide an attractive manifold in which to understand the RSS translocation and trafficking.


Asunto(s)
Sulfuro de Hidrógeno , Compuestos de Sulfhidrilo , Compuestos Heterocíclicos con 2 Anillos , Sulfuro de Hidrógeno/química , Imidazolidinas , Compuestos Macrocíclicos , Piperidinas , Azufre/metabolismo , Agua
18.
Angew Chem Int Ed Engl ; 61(30): e202204570, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35580198

RESUMEN

S/N crosstalk species derived from the interconnected reactivity of H2 S and NO facilitate the transport of reactive sulfur and nitrogen species in signaling, transport, and regulatory processes. We report here that simple Fe2+ ions, such as those that are bioavailable in the labile iron pool (LIP), react with thionitrite (SNO- ) and perthionitrite (SSNO- ) to yield the dinitrosyl iron complex [Fe(NO)2 (S5 )]- . In the reaction of FeCl2 with SNO- we were able to isolate the unstable intermediate hydrosulfido mononitrosyl iron complex [FeCl2 (NO)(SH)]- , which was characterized by X-ray crystallography. We also show that [Fe(NO)2 (S5 )]- is a simple synthon for nitrosylated Fe-S clusters via its reduction with PPh3 to yield Roussin's Red Salt ([Fe2 S2 (NO)4 ]2- ), which highlights the role of S/N crosstalk species in the assembly of fundamental Fe-S motifs.


Asunto(s)
Hierro , Compuestos Nitrosos , Hierro/química , Nitritos , Compuestos de Sulfhidrilo , Azufre
19.
Chemistry ; 28(22): e202200472, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35213751

RESUMEN

Inclusion of a second nitrogen atom in the aromatic core of phosphorus-nitrogen (PN) heterocycles results in unexpected tautomerization to a nonaromatic form. This tautomerization, initially observed in the solid state through X-ray crystallography, is also explained by computational analysis. We prepared an electron deficient analogue (2 e) with a fluorine on the pyridine ring and showed that the weakly basic pyridine resisted tautomerization, providing key insights to why the transformation occurs. To study the difference in solution vs. solid-state heterocycles, alkylated analogues that lock in the quinoidal tautomer were synthesized and their different 1 H NMR and UV/Vis spectra studied. Ultimately, we determined that all heterocycles are the aromatic tautomer in solution and all but 2 e switch to the quinoidal tautomer in the solid state. Better understanding of this transformation and under what circumstances it occurs suggest future use in a switchable on/off hydrogen-bond-directed receptor that can be tuned for complementary hydrogen bonding.


Asunto(s)
Nitrógeno , Fósforo , Enlace de Hidrógeno , Piridinas
20.
Chem Sci ; 12(39): 13045-13060, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34745535

RESUMEN

The oxidative addition of Pd to Si-H bonds is a crucial step in a variety of catalytic applications, and many aspects of this reaction are poorly understood. One important yet underexplored aspect is the electronic effect of silane substituents on reactivity. Herein we describe a systematic investigation of the formation of silyl palladium hydride complexes as a function of silane identity, focusing on electronic influence of the silanes. Using [(µ-dcpe)Pd]2 (dcpe = dicyclohexyl(phosphino)ethane) and tertiary silanes, data show that equilibrium strongly favours products formed from electron-deficient silanes, and is fully dynamic with respect to both temperature and product distribution. A notable kinetic isotope effect (KIE) of 1.21 is observed with H/DSiPhMe2 at 233 K, and the reaction is shown to be 0.5th order in [(µ-dcpe)Pd]2 and 1st order in silane. Formed complexes exhibit temperature-dependent intramolecular H/Si ligand exchange on the NMR timescale, allowing determination of the energetic barrier to reversible oxidative addition. Taken together, these results give unique insight into the individual steps of oxidative addition and suggest the initial formation of a σ-complex intermediate to be rate-limiting. The insight gained from these mechanistic studies was applied to hydrosilylation of alkynes, which shows parallel trends in the effect of the silanes' substituents. Importantly, this work highlights the relevance of in-depth mechanistic studies of fundamental steps to catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...