Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15651, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730954

RESUMEN

Septoria tritici blotch (STB) is a destructive foliar diseases threatening wheat grain yield. Wheat breeding for STB disease resistance has been identified as the most sustainable and environment-friendly approach. In this work, a panel of 316 winter wheat breeding lines from a commercial breeding program were evaluated for STB resistance at the seedling stage under controlled conditions followed by genome-wide association study (GWAS) and genomic prediction (GP). The study revealed a significant genotypic variation for STB seedling resistance, while disease severity scores exhibited a normal frequency distribution. Moreover, we calculated a broad-sense heritability of 0.62 for the trait. Nine single- and multi-locus GWAS models identified 24 marker-trait associations grouped into 20 quantitative trait loci (QTLs) for STB seedling-stage resistance. The seven QTLs located on chromosomes 1B, 2A, 2B, 5B (two), 7A, and 7D are reported for the first time and could potentially be novel. The GP cross-validation analysis in the RR-BLUP model estimated the genomic-estimated breeding values (GEBVs) of STB resistance with a prediction accuracy of 0.49. Meanwhile, the GWAS assisted wRR-BLUP model improved the accuracy to 0.58. The identified QTLs can be used for marker-assisted backcrossing against STB in winter wheat. Moreover, the higher prediction accuracy recorded from the GWAS-assisted GP analysis implies its power to successfully select superior candidate lines based on their GEBVs for STB resistance.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Triticum/genética , Fitomejoramiento , Genómica , Plantones
2.
Front Plant Sci ; 13: 1010249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330238

RESUMEN

Fusarium head blight (FHB) is an economically important disease affecting wheat and thus poses a major threat to wheat production. Several studies have evaluated the effectiveness of image analysis methods to predict FHB using disease-infected grains; however, few have looked at the final application, considering the relationship between cost and benefit, resolution, and accuracy. The conventional screening of FHB resistance of large-scale samples is still dependent on low-throughput visual inspections. This study aims to compare the performance of two cost-benefit seed image analysis methods, the free software "SmartGrain" and the fully automated commercially available instrument "Cgrain Value™" by assessing 16 seed morphological traits of winter wheat to predict FHB. The analysis was carried out on a seed set of FHB which was visually assessed as to the severity. The dataset is composed of 432 winter wheat genotypes that were greenhouse-inoculated. The predictions from each method, in addition to the predictions combined from the results of both methods, were compared with the disease visual scores. The results showed that Cgrain Value™ had a higher prediction accuracy of R 2 = 0.52 compared with SmartGrain for which R 2 = 0.30 for all morphological traits. However, the results combined from both methods showed the greatest prediction performance of R 2 = 0.58. Additionally, a subpart of the morphological traits, namely, width, length, thickness, and color features, showed a higher correlation with the visual scores compared with the other traits. Overall, both methods were related to the visual scores. This study shows that these affordable imaging methods could be effective to predict FHB in seeds and enable us to distinguish minor differences in seed morphology, which could lead to a precise performance selection of disease-free seeds/grains.

3.
Ecol Evol ; 12(3): e8676, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342585

RESUMEN

Long amplicon metabarcoding has opened the door for phylogenetic analysis of the largely unknown communities of microeukaryotes in soil. Here, we amplified and sequenced the ITS and LSU regions of the rDNA operon (around 1500 bp) from grassland soils using PacBio SMRT sequencing. We tested how three different methods for generation of operational taxonomic units (OTUs) effected estimated richness and identified taxa, and how well large-scale ecological patterns associated with shifting environmental conditions were recovered in data from the three methods. The field site at Kungsängen Nature Reserve has drawn frequent visitors since Linnaeus's time, and its species rich vegetation includes the largest population of Fritillaria meleagris in Sweden. To test the effect of different OTU generation methods, we sampled soils across an abrupt moisture transition that divides the meadow community into a Carex acuta dominated plant community with low species richness in the wetter part, which is visually distinct from the mesic-dry part that has a species rich grass-dominated plant community including a high frequency of F. meleagris. We used the moisture and plant community transition as a framework to investigate how detected belowground microeukaryotic community composition was influenced by OTU generation methods. Soil communities in both moisture regimes were dominated by protists, a large fraction of which were taxonomically assigned to Ciliophora (Alveolata) while 30%-40% of all reads were assigned to kingdom Fungi. Ecological patterns were consistently recovered irrespective of OTU generation method used. However, different methods strongly affect richness estimates and the taxonomic and phylogenetic resolution of the characterized community with implications for how well members of the microeukaryotic communities can be recognized in the data.

4.
Front Plant Sci ; 12: 705006, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512690

RESUMEN

Fusarium head blight (FHB) is one of the economically important diseases of wheat as it causes severe yield loss and reduces grain quality. In winter wheat, due to its vernalization requirement, it takes an exceptionally long time for plants to reach the heading stage, thereby prolonging the time it takes for characterizing germplasm for FHB resistance. Therefore, in this work, we developed a protocol to evaluate winter wheat germplasm for FHB resistance under accelerated growth conditions. The protocol reduces the time required for plants to begin heading while avoiding any visible symptoms of stress on plants. The protocol was tested on 432 genotypes obtained from a breeding program and a genebank. The mean area under disease progress curve for FHB was 225.13 in the breeding set and 195.53 in the genebank set, indicating that the germplasm from the genebank set had higher resistance to FHB. In total, 10 quantitative trait loci (QTL) for FHB severity were identified by association mapping. Of these, nine QTL were identified in the combined set comprising both genebank and breeding sets, while two QTL each were identified in the breeding set and genebank set, respectively, when analyzed separately. Some QTLs overlapped between the three datasets. The results reveal that the protocol for FHB evaluation integrating accelerated growth conditions is an efficient approach for FHB resistance breeding in winter wheat and can be even applied to spring wheat after minor modifications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...