Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 3): 119068, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705452

RESUMEN

Cellulose acetate membranes exhibit a potential to be applied in hemodialysis. However, their performance is limited by membrane fouling and a lack of antibacterial properties. In this research, copper oxide (I) nanoparticles were fabricated in situ into a cellulose acetate matrix in the presence of polyvinylpyrrolidone (pore-forming agent) and sulfobetaine (stabilising agent) to reduce the leakage of copper ions from nano-enhanced membranes. The influence of nanoparticles on the membrane structure and their antibacterial and antifouling properties were investigated. The results showed that incorporating Cu2O NPs imparted significant antibacterial properties against Staphylococcus aureus and fouling resistance under physiological conditions. The Cu2O NPs-modified membrane could pave the way for potential dialysis applications.

2.
Adv Mater ; : e2403114, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781555

RESUMEN

Multi-responsive nanomembranes are a new class of advanced materials that can be harnessed in complex architectures for micro and nano-manipulators, artificial muscles, energy harvesting, soft robotics, and sensors. The design and fabrication of responsive membranes must meet such challenges as trade-offs between responsiveness and mechanical durability, volumetric low-cost production ensuring low environmental impact, and compatibility with standard technologies or biological systems. This work demonstrates the fabrication of multi-responsive, mechanically robust poly(1,3-diaminopropane) (pDAP) nanomembranes and their application in fast photoactuators. The pDAP films are developed using a plasma-assisted polymerization, technique that offers large-scale production and versatility of potential industrial relevance. The pDAP layers exhibit high elasticity with the Young modulus of about 7 GPa, and remarkable mechanical durability across 20 to 80 °C temperatures. Notably, pDAP membranes reveal immediate and reversible contraction triggered by light, rising temperature, or reducing relative humidity underpinned by a reversible water sorption mechanism. These features enable the fabrication of photoactuators composed of pDAP-coated Si nanocantilevers, demonstrating milliseconds timescale response to light, tens of micrometers deflections, and robust performance up to kHz frequencies. Our results advance fundamental research on multi-responsive nanomembranes and hold the potential to boost versatile applications in light-to-motion conversion and sensing toward the industrial level. This article is protected by copyright. All rights reserved.

3.
ACS Appl Mater Interfaces ; 16(8): 10774-10784, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38350850

RESUMEN

The evolving field of photocatalysis requires the development of new functional materials, particularly those suitable for large-scale commercial systems. One particularly promising approach is the creation of hybrid organic/inorganic materials. Despite being extensively studied, materials such as polydopamine (PDA) and titanium oxide continue to show significant promise for use in such applications. Nitrogen-doped titanium oxide and free-standing PDA films obtained at the air/water interface are particularly interesting. This study introduces a straightforward and reproducible approach for synthesizing a novel class of large-scale multilayer nanocomposites. The method involves the alternate layering of high-quality materials at the air/water interface combined with precise atomic layer deposition techniques, resulting in a gradient nitrogen doping of titanium oxide layers with exceptionally sharp oxide/polymer interfaces. The analysis confirmed the presence of nitrogen in the interstitial and substitutional sites of the TiO2 lattice while maintaining the 2D-like structure of the PDA films. These chemical and structural characteristics translate into a reduction of the band gap by over 0.63 eV and an increase in the photogenerated current by over 60% compared with pure amorphous TiO2. Furthermore, the nanocomposites demonstrate excellent stability during the 1 h continuous photocurrent generation test.

4.
J Photochem Photobiol B ; 249: 112813, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977004

RESUMEN

Cancer remains a leading cause of mortality worldwide, necessitating the development of innovative therapeutic approaches. Nanoparticle-based drug delivery systems have garnered significant interest due to their multifunctionality, offering the potential to enhance cancer treatment efficacy and improve patient tolerability. Membrane-coated drug delivery systems hold great potential for enhancing the therapeutic outcome of nanoparticle-based anticancer therapies. In this study, we report the synthesis of multifunctional iron-functionalized mesoporous polydopamine nanoparticles (MPDAFe NPs). These nanoformulations demonstrate substantial potential for combining efficient drug delivery and magnetic resonance imaging (MRI) and showcase the advantages of biomimetic coating with tumor cell-derived membranes. This coating confers prolonged circulation and improved the targeting capabilities of the nanoparticles. Furthermore, comprehensive biosafety evaluations reveal negligible toxicity to normal cells, while the combined chemo- and phototherapy exhibited significant cytotoxicity towards cancer cells. Additionally, the photothermal effect evaluation highlights the enhanced cytotoxicity achieved through laser irradiation, showcasing the synergistic effects of the nanomaterials and photothermal therapy. Importantly, our chemotherapeutic effect evaluation demonstrates the superior efficacy of doxorubicin-loaded MPDAFe@Mem NPs (cancer cell membrane-coated MPDAFe NPs) in inhibiting cancer cell viability and proliferation, surpassing the potency of free doxorubicin. This study comprehensively investigates theranostic, membrane-coated drug delivery systems, underlining their potential to increase the efficacy of cancer treatment strategies. The multifunctional nature of the iron-functionalized polydopamine nanoparticles allows for efficient drug delivery and imaging capabilities, while the biomimetic coating enhances their biocompatibility and targeting ability. These findings contribute valuable insights towards the development of advanced nanomedicine for improved cancer therapeutics.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Medicina de Precisión , Biomimética , Doxorrubicina/farmacología , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Fototerapia/métodos , Sistemas de Liberación de Medicamentos/métodos , Imagen por Resonancia Magnética , Hierro , Nanomedicina Teranóstica
5.
Biomater Adv ; 154: 213653, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37862812

RESUMEN

Topographical cues on materials can manipulate cellular fate, particularly for neural cells that respond well to such cues. Utilizing biomaterial surfaces with topographical features can effectively influence neuronal differentiation and promote neurite outgrowth. This is crucial for improving the regeneration of damaged neural tissue after injury. Here, we utilized groove patterns to create neural conduits that promote neural differentiation and axonal growth. We investigated the differentiation of human neural stem cells (NSCs) on silicon dioxide groove patterns with varying height-to-width/spacing ratios. We hypothesize that NSCs can sense the microgrooves with nanoscale depth on different aspect ratio substrates and exhibit different morphologies and differentiation fate. A comprehensive approach was employed, analyzing cell morphology, neurite length, and cell-specific markers. These aspects provided insights into the behavior of the investigated NSCs and their response to the topographical cues. Three groove-pattern models were designed with varying height-to-width/spacing ratios of 80, 42, and 30 for groove pattern widths of 1 µm, 5 µm, and 10 µm and nanoheights of 80 nm, 210 nm, and 280 nm. Smaller groove patterns led to longer neurites and more effective differentiation towards neurons, whereas larger patterns promoted multidimensional differentiation towards both neurons and glia. We transferred these cues onto patterned polycaprolactone (PCL) and PCL-graphene oxide (PCL-GO) composite 'stamps' using simple soft lithography and reproducible extrusion 3D printing methods. The patterned scaffolds elicited a response from NSCs comparable to that of silicon dioxide groove patterns. The smallest pattern stimulated the highest neurite outgrowth, while the middle-sized grooves of PCL-GO induced effective synaptogenesis. We demonstrated the potential for such structures to be wrapped into tubes and used as grafts for peripheral nerve regeneration. Grooved PCL and PCL-GO conduits could be a promising alternative to nerve grafting.


Asunto(s)
Células-Madre Neurales , Humanos , Neuronas/fisiología , Diferenciación Celular , Andamios del Tejido/química , Dióxido de Silicio/farmacología
6.
Inorg Chem ; 62(9): 3761-3775, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36534941

RESUMEN

A series of {V12}-nuclearity polyoxovanadate cages covalently functionalized with one or sandwiched by two phthalocyaninato (Pc) lanthanide (Ln) moieties via V-O-Ln bonds were prepared and fully characterized for paramagnetic Ln = SmIII-ErIII and diamagnetic Ln = LuIII, including YIII. The LnPc-functionalized {V12O32} cages with fully oxidized vanadium centers in the ground state were isolated as (nBu4N)3[HV12O32Cl(LnPc)] and (nBu4N)2[HV12O32Cl(LnPc)2] compounds. As corroborated by a combined experimental (EPR, DC and AC SQUID, laser photolysis transient absorption spectroscopy, and electrochemistry) and computational (DFT, MD, and model Hamiltonian approach) methods, the compounds feature intra- and intermolecular electron transfer that is responsible for a partial reduction at V(3d) centers from VV to VIV in the solid state and at high sample concentrations. The effects are generally Ln dependent and are clearly demonstrated for the (nBu4N)3[HV12O32Cl(LnPc)] representative with Ln = LuIII or DyIII. Intramolecular charge transfer takes place for Ln = LuIII and occurs from a Pc ligand via the Ln center to the {V12O32} core of the same molecule, whereas for Ln = DyIII, only intermolecular charge transfer is allowed, which is realized from Pc in one molecule to the {V12O32} core of another molecule usually via the nBu4N+ countercation. For all Ln but DyIII, two of these phenomena may be present in different proportions. Besides, it is demonstrated that (nBu4N)3[HV12O32Cl(DyPc)] is a field-induced single molecule magnet with a maximal relaxation time of the order 10-3 s. The obtained results open up the way to further exploration and fine-tuning of these three modular molecular nanocomposites regarding tailoring and control of their Ln-dependent charge-separated states (induced by intramolecular transfer) and relaxation dynamics as well as of electron hopping between molecules. This should enable us to realize ultra-sensitive polyoxometalate powered quasi-superconductors, sensors, and data storage/processing materials for quantum technologies and neuromorphic computing.

7.
Biomater Adv ; 144: 213206, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36434929

RESUMEN

Novel multifunctional ZnO:Gd@ZIF-8 hybrid inorganic-organic nanocomposites with tunable luminescent-magnetic performance were successfully fabricated using wet chemistry synthesis routes. Physico-chemical characterization including crystal structure, phase compositions, morphology, surface properties, as well as photoluminescent and magnetic characteristics was performed using powder X-ray diffraction (XRD), FT-IR analysis, transmission and scanning electron microscopies (TEM/SEM), N2 adsorption/desorption, SQUID magnetometer, and photoluminescence spectroscopy. The biological studies of obtained materials, such as cytotoxicity profile and in vitro MRI imaging also investigated for potential use as contrast agents. Results showed that the doping with Gd3+ in a broad concentration range and the presence of ZIF-8 layer on ZnO affect the physico-chemical properties of the obtained composites. The obtained porous ZnO:Gd@ZIF-8 composites were highly crystalline with a large surface area. The XRD study indicated the formation of hexagonal wurtzite structure for ZnO and ZnO:Gd3+ (1-5 at.%). Luminescent studies showed, that ZnO is an ideal matrix for the incorporation of Gd3+ ions in a broad concentration range with efficient green luminescence. The PL intensity reached the maximum up to 5 at.% of Gd3+. The zeta potential values indicated the good stability of obtained nanoparticles. Proposed new materials with paramagnetic behavior and outstanding MR imaging capability could be used as potential contrast agents for magnetic resonance imaging.


Asunto(s)
Nanocompuestos , Óxido de Zinc , Luminiscencia , Espectroscopía Infrarroja por Transformada de Fourier , Medios de Contraste , Imagen por Resonancia Magnética , Nanocompuestos/química
8.
Adv Mater ; 34(6): e2106314, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34847272

RESUMEN

Implant-related microbial infection is a challenging clinical problem, and its treatment requires efficient eradication of the biofilm from the implant surface. Near-infrared (NIR)-responsive strategies are proposed as an emerging efficient antibacterial therapy. However, the utilization of photosensitizers or photocatalytic/photothermal nanomaterials in the available approach likely induces high potential risks of interfacial deterioration and biosafety compromise. Herein, a TiO2 /TiO2- x metasurface with potent NIR-responsive antibacterial activity is produced on a Ti alloy implant by a newly invented topochemical conversion-based alkaline-acid bidirectional hydrothermal method (aaBH). Electromagnetic simulations prove that NIR absorption and near-field distribution of the metasurface can be tuned by the dimension and arrangement of the nanostructural unit. Promising antibacterial efficacy is proved by both in vitro and in vivo tests, with low-power NIR irradiation for 10 min. Besides, the designed nanostructure in the metasurface itself also shows excellence in enhancing the adhesion-related gene expression of human gingival fibroblasts that are exposed to 10 min of NIR irradiation, proving the potent nanostructure-induced biological effects. This work provides a biosafe and upscalable metasurfacing approach with extraordinary capacity of manipulating light adsorption, photocatalysis, and biological properties.


Asunto(s)
Fotoquimioterapia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Titanio/química , Titanio/farmacología
9.
Mater Horiz ; 8(3): 912-924, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821321

RESUMEN

Nanoscale manipulation of material surfaces can create extraordinary properties, holding great potential for modulating the implant-bio interface for enhanced performance. In this study, a green, simple and biocompatible nanosurfacing approach based on weak alkalinity-activated solid-state dewetting (AAD) was for the first time developed to nano-manipulate the Ti6Al4V surface by atomic self-rearrangement. AAD treatment generated quasi-periodic titanium oxide nanopimples with high surface energy. The nanopimple-like nanostructures enhanced the osteogenic activity of osteoblasts, facilitated M2 polarization of macrophages, and modulated the cross-talk between osteoblasts and macrophages, which collectively led to significant strengthening of in vivo bone-implant interfacial bonding. In addition, the titanium oxide nanopimples strongly adhered to the Ti alloy, showing resistance to tribocorrosion damage. The results suggest strong nano-bio interfacial effects, which was not seen for the control Ti alloy processed through traditional thermal oxidation. Compared to other nanostructuring strategies, the AAD technique shows great potential to integrate high-performance, functionality, practicality and scalability for surface modification of medical implants.


Asunto(s)
Aleaciones , Titanio , Osteoblastos , Osteogénesis , Prótesis e Implantes
10.
ACS Appl Mater Interfaces ; 13(7): 9195-9205, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33565869

RESUMEN

The influence of magnetite nanoparticles coated with poly(acrylic acid) (Fe3O4@PAA NPs) on the organization of block copolymer thin films via a self-assembly process was investigated. Polystyrene-b-poly(4-vinylpyridine) films were obtained by the dip-coating method and thoroughly examined by X-ray reflectivity, transmission electron microscopy, atomic force microscopy, and grazing incidence small-angle scattering. Magnetic properties of the films were probed via superconducting quantum interference device (SQUID) magnetometry. It was demonstrated that due to the hydrogen bonding between P4VP and PAA, the Fe3O4@PAA NPs segregate selectively inside P4VP domains, enhancing the microphase separation process. This in turn, together with employing carefully optimized dip-coating parameters, results in the formation of hybrid thin films with highly ordered nanostructures. The addition of Fe3O4@PAA nanoparticles does not change the average interdomain spacing in the film lateral nanostructure. Moreover, it was shown that the nanoparticles can easily be removed to obtain well-ordered nanoporous templates.

11.
Nanomaterials (Basel) ; 10(5)2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443522

RESUMEN

The arrangement of two-dimensional graphene oxide sheets has been shown to influence physico-chemical properties of the final bulk structures. In particular, various graphene oxide microfibers remain of high interest in electronic applications due to their wire-like thin shapes and the ease of hydrothermal fabrication. In this research, we induced the internal ordering of graphene oxide flakes during typical hydrothermal fabrication via doping with Calcium ions (~6 wt.%) from the capillaries. The Ca2+ ions allowed for better graphene oxide flake connections formation during the hydrogelation and further modified the magnetic and electric properties of structures compared to previously studied aerogels. Moreover, we observed the unique pseudo-porous fiber structure and flakes connections perpendicular to the long fiber axis. Pulsed electron paramagnetic resonance (EPR) and conductivity measurements confirmed the denser flake ordering compared to previously studied aerogels. These studies ultimately suggest that doping graphene oxide with Ca2+ (or other) ions during hydrothermal methods could be used to better control the internal architecture and thus tune the properties of the formed structures.

12.
Sci Rep ; 8(1): 4041, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511277

RESUMEN

Micro/nanostructures, which are assembled from various nanosized building blocks are of great scientific interests due to their combined features in the micro- and nanometer scale. This study for the first time demonstrates that ultrasmall superparamagnetic iron oxide nanoparticles can change the microstructure of their hydrocolloids under the action of external magnetic field. We aimed also at the establishment of the physiological temperature (39 °C) influence on the self-organization of silver and ultrasmall iron oxides nanoparticles (NPs) in hydrocolloids. Consequences of such induced changes were further investigated in terms of their potential effect on the biological activity in vitro. Physicochemical characterization included X-ray diffraction (XRD), optical microscopies (SEM, cryo-SEM, TEM, fluorescence), dynamic light scattering (DLS) techniques, energy dispersive (EDS), Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopies, zeta-potential and magnetic measurements. The results showed that magnetic field affected the hydrocolloids microstructure uniformity, fluorescence properties and photodynamic activity. Likewise, increased temperature caused changes in NPs hydrodynamic size distribution and in hydrocolloids microstructure. Magnetic field significantly improved photodynamic activity that was attributed to enhanced generation of reactive oxygen species due to reorganization of the microstructure.

13.
Beilstein J Nanotechnol ; 9: 591-601, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527434

RESUMEN

Reduced graphene oxide-magnetite hybrid aerogels attract great interest thanks to their potential applications, e.g., as magnetic actuators. However, the tendency of magnetite particles to migrate within the matrix and, ultimately, escape from the aerogel structure, remains a technological challenge. In this article we show that coating magnetite particles with polydopamine anchors them on graphene oxide defects, immobilizing the particles in the matrix and, at the same time, improving the aerogel structure. Polydopamine coating does not affect the magnetic properties of magnetite particles, making the fabricated materials promising for industrial applications.

14.
Sci Rep ; 7(1): 11800, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924152

RESUMEN

Gd2(MoO4)3 (GMO) is a well-studied multiferroic material that exhibits full ferroelectric and ferroelastic behavior at room temperature. However, its difficult stabilization in thin films has prevented the study and exploitation of its multiferroic properties in different architectures. Here, we report on the study of GMO thin films deposited on Si(001) substrates by Pulsed Laser Deposition (PLD). The physicochemical properties of the films are discussed and studied. Results obtained by X-ray diffraction, X-ray photoelectron spectroscopy, high resolution transmission microscopy and second harmonic generation show that the orthorhombic (ß'-GMO) multiferroic phase can be stabilized and homogenized by post deposition thermal reconstruction. Finally, the reconstruction process takes place via a complex surface mechanism with a clear leaf-like behavior.

15.
Toxicol In Vitro ; 44: 256-265, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28754539

RESUMEN

Synthesis of magnetic nanoparticles and magnetic nanoclusters was performed by the co-precipitation method or solvothermal synthesis, respectively, followed by oxidative polymerization of dopamine, resulting in a polydopamine (PDA) shell. The nanomaterials obtained were described using TEM, FTIR and magnetic measurements. For the first time, cyto- and genotoxicity studies of polydopamine-coated nanostructures were performed on cancer and normal cell lines, providing in-depth insight into the toxicity of such materials. The tests conducted, e.g. ROS, apoptosis and DNA double-break of the nanomaterials obtained revealed the low toxicity of these structures. Thus, these results prove the biocompatibility and low genotoxicity of these materials and provide new data on the toxicity of PDA-coated materials, which is of great importance for their biomedical application.


Asunto(s)
Indoles/toxicidad , Nanopartículas de Magnetita/toxicidad , Polímeros/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Daño del ADN , Humanos , Fenómenos Magnéticos , Nanopartículas de Magnetita/ultraestructura , Microscopía Electrónica de Transmisión , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
16.
Nanotechnology ; 28(5): 055603, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28029097

RESUMEN

Magnetite nanoparticles (NPs) decorated with silver (magnetite/Ag) are intensively investigated due to their application in the biomedical field. We demonstrate that the increase of silver content on the surface of nanoparticles improves the adsorptivity of antibiotic rifampicin as well as antibacterial properties. The use of ginger extract allowed to improve the silver nucleation on the magnetite surface that resulted in an increase of silver content. Physicochemical and functional characterization of magnetite/Ag NPs was performed. Our results show that 5%-10% of silver content in magnetite/Ag NPs is already sufficient for antimicrobial properties against Streptococcus salivarius and Staphylococcus aureus. The rifampicin molecules on the magnetite/Ag NPs surface made the spectrum of antimicrobial activity wider. Cytotoxicity evaluation of the magnetite/Ag/rifampicin NPs showed no harmful action towards normal human fibroblasts, whereas the effect on human embryonic kidney cell viability was time and dose dependent.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas de Magnetita/química , Rifampin/farmacología , Plata/farmacología , Zingiber officinale/química , Adsorción/efectos de los fármacos , Antibacterianos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Células HEK293 , Humanos , Nanopartículas de Magnetita/ultraestructura , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología , Rifampin/química , Plata/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Streptococcus salivarius/efectos de los fármacos , Streptococcus salivarius/crecimiento & desarrollo
17.
Mol Biotechnol ; 58(5): 351-61, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27048425

RESUMEN

The transgenic process allows for obtaining genetically modified animals for divers biomedical applications. A number of transgenic animals for xenotransplantation have been generated with the somatic cell nuclear transfer (SCNT) method. Thereby, efficient nucleic acid delivery to donor cells such as fibroblasts is of particular importance. The objective of this study was to establish stable transgene expressing porcine fetal fibroblast cell lines using magnetic nanoparticle-based gene delivery vectors under a gradient magnetic field. Magnetic transfection complexes prepared by self-assembly of suitable magnetic nanoparticles, plasmid DNA, and an enhancer under an inhomogeneous magnetic field enabled the rapid and efficient delivery of a gene construct (pCD59-GFPBsd) into porcine fetal fibroblasts. The applied vector dose was magnetically sedimented on the cell surface within 30 min as visualized by fluorescence microscopy. The PCR and RT-PCR analysis confirmed not only the presence but also the expression of transgene in all magnetofected transgenic fibroblast cell lines which survived antibiotic selection. The cells were characterized by high survival rates and proliferative activities as well as correct chromosome number. The developed nanomagnetic gene delivery formulation proved to be an effective tool for the production of genetically engineered fibroblasts and may be used in future in SCNT techniques for breeding new transgenic animals for the purpose of xenotransplantation.


Asunto(s)
Fibroblastos/citología , Magnetismo , Nanotecnología , Animales , Animales Modificados Genéticamente , Línea Celular , Microscopía Electrónica de Transmisión , ARN Mensajero/genética , Porcinos
18.
Nanotechnology ; 27(17): 175706, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26987563

RESUMEN

Zinc oxide (ZnO) is a wide-bandgap semiconductor material with applications in a variety of fields such as electronics, optoelectronic and solar cells. However, much of these applications demand a reproducible, reliable and controllable synthesis method that takes special care of their functional properties. In this work ZnO and Cu-doped ZnO nanowires are obtained by an optimized hydrothermal method, following the promising results which ZnO nanostructures have shown in the past few years. The morphology of as-prepared and copper-doped ZnO nanostructures is investigated by means of scanning electron microscopy and high resolution transmission electron microscopy. X-ray diffraction is used to study the impact of doping on the crystalline structure of the wires. Furthermore, the mechanical properties (nanoindentation) and the functional properties (absorption and photoluminescence measurements) of ZnO nanostructures are examined in order to assess their applicability in photovoltaics, piezoelectric and hybrids nanodevices. This work shows a strong correlation between growing conditions, morphology, doping and mechanical as well as optical properties of ZnO nanowires.

19.
Mater Sci Eng C Mater Biol Appl ; 55: 343-59, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26117765

RESUMEN

The article is devoted to preparation and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy. Magnetite nanopowder was produced by thermochemical technique; silver was deposited on the magnetite nanoparticles in the form of silver clusters. Magnetite/silver nanocomposite was investigated by XRD, SEM, TEM, AFM, XPS, EDX techniques. Adsorptivity of magnetite/silver nanocomposite towards seven antibiotics from five different groups was investigated. It was shown that rifampicin, doxycycline, ceftriaxone, cefotaxime and doxycycline may be attached by physical adsorption to magnetite/silver nanocomposite. Electrostatic surfaces of antibiotics were modeled and possible mechanism of antibiotic attachment is considered in this article. Raman spectra of magnetite, magnetite/silver and magnetite/silver/antibiotic were collected. It was found that it is difficult to detect the bands related to antibiotics in the magnetite/silver/antibiotic nanocomposite spectra due to their overlap by the broad carbon bands of magnetite nanopowder. Magnetic measurements revealed that magnetic saturation of the magnetite/silver/antibiotic nanocomposites decreased on 6-19 % in comparison with initial magnetite nanopowder. Pilot study of antimicrobial properties of the magnetite/silver/antibiotic nanocomposites were performed towards Bacillus pumilus.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Nanocompuestos/química , Plata/química , Bacillus/efectos de los fármacos , Cefotaxima/química , Doxiciclina/química , Nanopartículas de Magnetita/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Espectroscopía de Fotoelectrones , Rifampin/química , Plata/farmacología , Espectrometría Raman , Electricidad Estática , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA