Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14831, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937529

RESUMEN

Pomegranate (Punica granatum L.) fruit quality depends on many traits including visual, biochemical and mineral characteristics. One of the negative traits is aril whitening (AW) which is a frequently observed disorder in hot and dry climates, that leads to decline in desirable fruit quality. Color, antioxidant, and mineral contents of the arils are of prime importance as quality traits. Therefore, this study aims to investigate the effect of shading and foliar minerals on fruit quality during the fruit development stages of pomegranate. Treatments included shaded (50% green net) and unshaded trees and foliar application of trees with potassium sulfate (K, 1% and 2%) or sodium silicate (Si, 0.05, 0.1 and 0.15%) during two growing seasons. Results showed that the severity of AW at harvest decreased significantly when trees were covered with shading compared to control. The color values of L* and °hue for arils were lower in fruits grown under shading conditions indicating darker red arils. Shading significantly reduced chilling injury in cold storage compared to open field fruits. Shading and Si 0.15% increased superoxide dismutase, and catalase enzymes activity while decreased Polyphenol oxidase and peroxidase. Covering trees with shading and Si 0.15% spray resulted in the highest total anthocyanin, antioxidant activity, and total phenolics content in the arils. Shading as well as Si 0.15% increased macronutrients content of the arils. The study concluded that covering pomegranate trees and spraying with Si in hot climate reduced AW, increased antioxidant traits, and led to higher fruit quality.


Asunto(s)
Antioxidantes , Frutas , Minerales , Granada (Fruta) , Silicatos , Sulfatos , Antioxidantes/metabolismo , Frutas/química , Frutas/efectos de los fármacos , Frutas/metabolismo , Granada (Fruta)/química , Sulfatos/análisis , Minerales/análisis , Minerales/metabolismo , Color , Antocianinas/análisis , Antocianinas/metabolismo
2.
BMC Genomics ; 25(1): 237, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438980

RESUMEN

BACKGROUND: Here, we investigated the underlying transcriptional-level evidence behind phytochemical differences between two metabolically extreme genotypes of Thymus daenensis. The genotypes 'Zagheh-11' (thymol/carvacrol type, poor in essential oil [EO] [2.9%] but rich in triterpenic acids) and 'Malayer-21' (thymol type and rich in EO [3.8%]) were selected from an ongoing breeding program and then clonally propagated for further experimental use. MATERIALS AND METHODS: GC-MS, GC-FID, and HPLC-PDA were utilized to monitor the fluctuation of secondary metabolites at four phenological stages (vegetative, bud burst, early, and full-flowering stages). The highest phytochemical divergence was observed at early flowering stage. Both genotypes were subjected to mRNA sequencing (approximately 100 million paired reads) at the aforementioned stage. The expression patterns of four key genes involved in the biosynthesis of terpenoids were also validated using qRT-PCR. RESULTS: Carvacrol content in 'Zagheh-11' (26.13%) was approximately 23 times higher than 'Malayer-21' (1.12%). Reciprocally, about 10% higher thymol was found in 'Malayer-21' (62.15%). Moreover, the concentrations of three major triterpenic acids in 'Zagheh-11' were approximately as twice as those found in 'Malayer-21'. Transcriptome analysis revealed a total of 1840 unigenes that were differentially expressed, including terpene synthases, cytochrome P450, and terpenoid backbone genes. Several differentially expressed transcription factors (such as MYB, bZIP, HB-HD-ZIP, and WRKY families) were also identified. These results suggest that an active cytosolic mevalonate (MVA) pathway may be linked to higher levels of sesquiterpenes, triterpenic acids, and carvacrol in 'Zagheh-11'. The chloroplastic pathway of methyl erythritol phosphate (MEP) may have also contributed to a higher accumulation of thymol in Malayer-21. Indeed, 'Zagheh-11' showed higher expression of certain genes (HMGR, CYP71D180, ß-amyrin 28-monooxygenase, and sesquiterpene synthases) in the MVA pathway, while some genes in the MEP pathway (including DXR, ispG, and γ-terpinene synthase) were distinctly expressed in Malayer-21. Future efforts in metabolic engineering of MVA/MEP pathways may benefit from these findings to produce increased levels of desired secondary metabolites at commercial scale.


Asunto(s)
Cimenos , Ácido Mevalónico , Aceites Volátiles , Humanos , Fosfatos , Timol , Genotipo , Fitoquímicos , RNA-Seq , Terpenos , Expresión Génica
3.
Sci Rep ; 13(1): 12415, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524806

RESUMEN

Non-erroneous and well-optimized transcriptome assembly is a crucial prerequisite for authentic downstream analyses. Each de novo assembler has its own algorithm-dependent pros and cons to handle the assembly issues and should be specifically tested for each dataset. Here, we examined efficiency of seven state-of-art assemblers on ~ 30 Gb data obtained from mRNA-sequencing of Thymus daenensis. In an ensemble workflow, combining the outputs of different assemblers associated with an additional redundancy-reducing step could generate an optimized outcome in terms of completeness, annotatability, and ORF richness. Based on the normalized scores of 16 benchmarking metrics, EvidentialGene, BinPacker, Trinity, rnaSPAdes, CAP3, IDBA-trans, and Velvet-Oases performed better, respectively. EvidentialGene, as the best assembler, totally produced 316,786 transcripts, of which 235,730 (74%) were predicted to have a unique protein hit (on uniref100), and also half of its transcripts contained an ORF. The total number of unique BLAST hits for EvidentialGene was approximately three times greater than that of the worst assembler (Velvet-Oases). EvidentialGene could even capture 17% and 7% more average BLAST hits than BinPacker and Trinity. Although BinPacker and CAP3 produced longer transcripts, the EvidentialGene showed a higher collinearity between transcript size and ORF length. Compared with the other programs, EvidentialGene yielded a higher number of optimal transcript sets, further full-length transcripts, and lower possible misassemblies. Our finding corroborates that in non-model species, relying on a single assembler may not give an entirely satisfactory result. Therefore, this study proposes an ensemble approach of accompanying EvidentialGene pipelines to acquire a superior assembly for T. daenensis.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma , Algoritmos , Perfilación de la Expresión Génica
4.
Front Plant Sci ; 14: 1270381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235200

RESUMEN

Introduction: Persian walnut (Juglans regia) is an economically important nut fruit species cultivated worldwide for its nutritious kernel and timber quality wood. Walnut trees are mostly hetero-dichogamous and, depending on the genotype, some cultivars are protogynous, while others are protandrous. Although selfing is possible when male and female blooms overlap, the dichogamy of the species promotes outcrossing. In addition to sexual reproduction, some reports indicate that elements of apomixis may occur in commercial orchards of walnut varieties and in the last two decades, nut production by apomixis has been reported in walnut. However, there are no reliable studies on the occurrence of apomictic reproduction based on cytoembryological observations and/or molecular marker-progeny tests. This study addresses the combined use of molecular and cytological analyses to gain new insights into the population genetics and reproduction systems of J. regia. Methods: We systematically analyzed the reproductive origin of individual progeny plants from 8 different cultivated walnut genotypes using microsatellite genotyping and carried out cytohistological investigations of 5 cultivated walnut genotypes arising seed sets from isolated flowers, to shed light on the mode of reproduction. Results and discussion: These cytometric and genotyping analyses did not support any asexual mode of reproduction or asexual propagation by seed and all individuals studied were identified as zygotic plants produced by crossing. Likewise, the cytological findings did not confirm completely the first component of apomixis, namely apomeiosis. On the other hand, according to histological evidence, adventitious embryony seems to take place at low frequency. Overall, our findings suggest that the occurrence of gametophytic apomixis is unlikely in J. regia, but sporophytic apomixis cannot be completely ruled out.

5.
BMC Plant Biol ; 22(1): 373, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896978

RESUMEN

BACKGROUND: Today, salinity stress is one of the most important abiotic stresses in the world, because it causes damage to many agricultural products and reduces their yields. Oxidative stress causes tissue damages in plants, which occurs with the production of reactive oxygen species (ROS) when plants are exposed to environmental stresses such as salinity. Today, it is recommended to use compounds that increase the resistance of plants to environmental stresses and improve plant metabolic activities. Salicylic acid (SA), as an intracellular and extracellular regulator of the plant response, is known as one of these effective compounds. Damask rose (Rosa damascena Mill.) is a medicinal plant from the Rosaceae, and its essential oils and aromatic compounds are used widely in the cosmetic and food industries in the world. Therefore, considering the importance of this plant from both medicinal and ornamental aspects, for the first time, we investigated one of the native cultivars of Iran (Kashan). Since one of the most important problems in Damask rose cultivation is the occurrence of salinity stress, for the first time, we investigated the interaction of several levels of NaCl salinity (0, 4, 8, and 12 ds m- 1) with SA (0, 0.5, 1, and 2 mM) as a stress reducer. RESULTS: Since salinity stress reduces plant growth and yield, in this experiment, the results showed that the increase in NaCl concentration caused a gradual decrease in photosynthetic and morphological parameters and an increase in ion leakage. Also, increasing the level of salinity stress up to 12 ds m- 1 affected the amount of chlorophyll, root length and leaf total area, all of which reduced significantly compared to plants under no stress. However, many studies have highlighted the application of compounds that reduce the negative effects of stress and increase plant resistance and tolerance against stresses. In this study, the application of SA even at low concentration (0.5 mM) could neutralize the negative effects of salinity stress in the Rosa damascena. In this regard, the results showed that salinity increases the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and the concentration of proline, protein and glycine betaine (GB). Overexpression of antioxidant genes (Ascorbate Peroxidase (APX), CAT, Peroxidase (POD), Fe-SOD and Cu-SOD) showed an important role in salt tolerance in Damascus rose. In addition, 0.5 mm SA increased the activity of enzymatic and non-enzymatic systems and increased salinity tolerance. CONCLUSIONS: The change in weather conditions due to global warming and increased dryness contributes to the salinization of the earth's surface soils. Therefore, it is of particular importance to measure the threshold of tolerance of roses to salinity stress and the effect of stress-reducing substances in plants. In this context, SA has various roles such as increasing the content of pigments, preventing ethylene biosynthesis, increasing growth, and activating genes involved in stress, which modifies the negative effects of salinity stress. Also, according to the results of this research, even in the concentration of low values, positive results can be obtained from SA, so it can be recommended as a relatively cheap and available material to improve production in saline lands.


Asunto(s)
Rosa , Ácido Salicílico , Antioxidantes/metabolismo , Rosa/metabolismo , Ácido Salicílico/farmacología , Salinidad , Estrés Salino , Cloruro de Sodio/farmacología , Superóxido Dismutasa/metabolismo
6.
Sci Rep ; 11(1): 4568, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633151

RESUMEN

Climate change and population increase are two challenges for crop production in the world. Hazelnut (Corylus avellana L.) is considered an important nut regarding its nutritional and economic values. As a fact, the application of supporting materials as foliage sprays on plants will decrease biotic and abiotic stresses. In this study, the effects of salicylic acid (0, 1 mM and 2.5 mM) and kaolin (0, 3% and 6%) sprays were investigated on morphological, physiological, pomological, and biochemical characteristics of hazelnut. The results showed that 1 mM salicylic acid and 6% kaolin had the best effects on nut and kernel weight compared to control. Biochemical parameters such as chlorophyll a, b, a + b, and carotenoid contents showed that salicylic acid and kaolin improved pigment concentration. Proline and antioxidant contents such as phenolic acids, SOD, APX, and CAT enzyme activities increased by these applications. On the other hand, lipid peroxidation, protein content, and H2O2 content were decreased. Based on the tolerance index result, Merveille de Bollwiller cultivar showed the highest tolerance while 'Fertile de Coutard' had the lowest value. Therefore, hazelnut performance may be improved through exogenous application of the signaling (salicylic acid) and particle film (Kaolin) compounds in warmer climates.


Asunto(s)
Corylus/efectos de los fármacos , Corylus/fisiología , Caolín/farmacología , Nueces/efectos de los fármacos , Nueces/fisiología , Ácido Salicílico/farmacología , Antioxidantes/metabolismo , Corylus/química , Electrólitos , Regulación Enzimológica de la Expresión Génica , Nueces/química , Especificidad de Órganos , Oxidación-Reducción , Fitoquímicos , Carácter Cuantitativo Heredable , Temperatura
7.
Biol Res ; 54(1): 1, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407933

RESUMEN

BACKGROUND: Apple is one of the oldest and most valuable fruits. Water restriction is one of the major problems in the production of this fruit in some planting areas. METHODS: Effects of kaolin spray treatments were studied on two early apple cultivars of Golab and Shafi-Abadi under sustained deficit irrigation (SDI) in Alborz province, Iran during 2017 and 2018. Irrigation treatments were 100%, 85%, and 70% ETc and kaolin application were concentrations of 0, 3 and 6% in 2017 and 0, 1.5 and 3% in 2018. RESULTS: Results showed that 85% ETc treatment compared to other irrigation treatments improved apple tree crown volume in 2017. Deficit irrigation treatments significantly reduced fruit weight in both years. Application with 6% kaolin resulted in 33.3% increase in apple fruit weight compared to non-kaolin treatment at 100% ETc irrigation in the first year. Severe deficit irrigation (70% ETc) significantly reduced apple fruit length in both years, but 6% kaolin increased fruit length in both apple cultivars in 2017. Severe deficit irrigation treatment increased the firmness of apple fruit compared to control and mild deficit irrigation (85% ETc) in the first year of experiment. There was no significant difference between irrigation treatments for apple fruit firmness in the second year of experiment. Kaolin treatments of 1.5% and 3% at full irrigation increased the soluble solids content of apple fruit by 36.6% and 44.1% in 2018, respectively. Deficit irrigation treatments significantly increased leaf proline content compared to control in both years. In the first year, kaolin treatments increased leaf proline but in the second year, leaf proline was not significant. Deficit irrigation treatment of 70% ETc and 6% kaolin had the highest amount of glycine betaine content, malondialdehyde and hydrogen peroxide in apple leaf in the first year of experiment. CONCLUSIONS: Severe deficit irrigation stress (70% ETc) increased the activity of nonenzymatic defense systems of apple trees. Kaolin as a drought stress reducing agent can be recommended in apple orchards of Golab and Shafi-Abadi cultivars as an effective and inexpensive method to improve tolerance to drought stress conditions.


Asunto(s)
Frutas/crecimiento & desarrollo , Caolín/farmacología , Malus/crecimiento & desarrollo , Hojas de la Planta/química , Agua , Riego Agrícola , Frutas/efectos de los fármacos , Irán , Malus/efectos de los fármacos , Prolina/química
8.
Biol. Res ; 54: 1-1, 2021. graf, tab
Artículo en Inglés | LILACS | ID: biblio-1505786

RESUMEN

BACKGROUND: Apple is one of the oldest and most valuable fruits. Water restriction is one of the major problems in the production of this fruit in some planting areas. METHODS: Effects of kaolin spray treatments were studied on two early apple cultivars of Golab and Shafi-Abadi under sustained deficit irrigation (SDI) in Alborz province, Iran during 2017 and 2018. Irrigation treatments were 100%, 85%, and 70% ETc and kaolin application were concentrations of 0, 3 and 6% in 2017 and 0, 1.5 and 3% in 2018. RESULTS: Results showed that 85% ETc treatment compared to other irrigation treatments improved apple tree crown volume in 2017. Deficit irrigation treatments significantly reduced fruit weight in both years. Application with 6% kaolin resulted in 33.3% increase in apple fruit weight compared to non-kaolin treatment at 100% ETc irrigation in the first year. Severe deficit irrigation (70% ETc) significantly reduced apple fruit length in both years, but 6% kaolin increased fruit length in both apple cultivars in 2017. Severe deficit irrigation treatment increased the firmness of apple fruit compared to control and mild deficit irrigation (85% ETc) in the first year of experiment. There was no significant difference between irrigation treatments for apple fruit firmness in the second year of experiment. Kaolin treatments of 1.5% and 3% at full irrigation increased the soluble solids content of apple fruit by 36.6% and 44.1% in 2018, respectively. Deficit irrigation treatments significantly increased leaf proline content compared to control in both years. In the first year, kaolin treatments increased leaf proline but in the second year, leaf proline was not significant. Deficit irrigation treatment of 70% ETc and 6% kaolin had the highest amount of glycine betaine content, malondialdehyde and hydrogen peroxide in apple leaf in the first year of experiment. CONCLUSIONS: Severe deficit irrigation stress (70% ETc) increased the activity of nonenzymatic defense systems of apple trees. Kaolin as a drought stress reducing agent can be recommended in apple orchards of Golab and Shafi-Abadi cultivars as an effective and inexpensive method to improve tolerance to drought stress conditions.


Asunto(s)
Agua , Hojas de la Planta/química , Malus/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Caolín/farmacología , Prolina/química , Malus/efectos de los fármacos , Riego Agrícola , Frutas/efectos de los fármacos , Irán
9.
Biol Res ; 52(1): 43, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31405373

RESUMEN

BACKGROUND: Drought is one of the main serious problems for agriculture production which its intensity is increasing in many parts of the world, hence, improving water use efficiency is a main goal for sustainable agriculture. RESULTS: Growth indices including relative shoot length growth (SL), relative stem diameter increase (SD) and relative trunk cross sectional area growth (TCSA) measured at the start and end of the season decreased by reducing the irrigation level. Chlorophyll index (CI) was decreased at 70% crop evapotranspiration, however water use efficiency (WUE), leaf and fruit total phenolic content (TPC), and fruit anthocyanin content (AC) were among the traits that showed increment by water deficit stress in both cultivars. Shafi-Abadi cultivar showed to be more sensitive to the water stress than 'Golab'. Kaolin treatment improved SL, SD and CI traits, but this increase was statistically significant only for SD at 5% level. Kaolin had no significant effect on yield and water use efficiency (WUE), however, it had negative effect on yield efficiency (YE). Kaolin treatments also significantly increased fruit and leaf TPC (P < 0.01) but had no effect on leaf and fruit total antioxidant activity (AA), as well as fruit anthocyanin content (AC) and soluble proteins (SP). CONCLUSIONS: Irrigation at 85% ETc showed better results than 100% and 70% ETc levels for yield attributes. It seems that the more pronounced effect of kaolin on vegetative traits but not on the fruits, might be attributed to the early ripening and harvest time of the examined cultivars.


Asunto(s)
Riego Agrícola/métodos , Sequías , Frutas/crecimiento & desarrollo , Caolín/administración & dosificación , Malus/crecimiento & desarrollo , Frutas/efectos de los fármacos , Malus/efectos de los fármacos , Estaciones del Año
10.
J Sci Food Agric ; 99(11): 5149-5156, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31032929

RESUMEN

BACKGROUND: Selenium (Se) is an essential micronutrient due to its anticarsinogenic properties and positive influence on human immune system. Fortification of some fruits based on their rates of consumption and availability all year round appears to be an effective way to supplement Se in the human diet. In this study the possibility of augmenting Se content in 'Starking Delicious' apple fruit during two growing seasons was investigated. In 2016, the impact of 0, 0.5, 1 and 1.5 mg Se L-1 by foliar application on Se accumulation and fruit ripening as well as quality attributes was investigated. In 2017, the effects of 1.5 mg Se L-1 foliar application on fruit Se content and changes in the antioxidant system and storability were studied with a 30-day interval during 6 months storage at 0 ± 1 °C. RESULTS: Foliar application of Se significantly increased both leaf and fruit Se concentration. The increase in Se content enhanced the flesh firmness, titrable acidity, and soluble solid content of the fruit. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) were markedly amplified by Se treatments as compared to the control, resulting in lower superoxide anion radical (O2 -• ) and hydrogen peroxide (H2 O2 ) contents, correspondingly higher membrane integrity as revealed by lower ion leakage and malondialdehyde accumulation and the fruit with lower water core. CONCLUSION: Application of Se was efficient in increasing fruit Se content and nutraceutical properties, retarding the flesh firmness reduction, and postponing fruit ripening resulting from lower ethylene biosynthesis rate, thereby positively affecting apple fruit quality and storability. © 2019 Society of Chemical Industry.


Asunto(s)
Frutas/química , Malus/química , Ácido Selénico/análisis , Selenio/análisis , Antioxidantes/análisis , Antioxidantes/metabolismo , Ascorbato Peroxidasas/análisis , Biofortificación , Catalasa/análisis , Catalasa/metabolismo , Fertilizantes/análisis , Almacenamiento de Alimentos , Frutas/metabolismo , Malondialdehído/análisis , Malondialdehído/metabolismo , Malus/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Ácido Selénico/metabolismo , Superóxido Dismutasa/análisis , Superóxido Dismutasa/metabolismo
11.
Biol. Res ; 52: 43, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1019507

RESUMEN

BACKGROUND: Drought is one of the main serious problems for agriculture production which its intensity is increasing in many parts of the world, hence, improving water use efficiency is a main goal for sustainable agriculture. RESULTS: Growth indices including relative shoot length growth (SL), relative stem diameter increase (SD) and relative trunk cross sectional area growth (TCSA) measured at the start and end of the season decreased by reducing the irrigation level. Chlorophyll index (CI) was decreased at 70% crop evapotranspiration, however water use efficiency (WUE), leaf and fruit total phenolic content (TPC), and fruit anthocyanin content (AC) were among the traits that showed increment by water deficit stress in both cultivars. Shafi-Abadi cultivar showed to be more sensitive to the water stress than 'Golab' Kaolin treatment improved SL, SD and CI traits, but this increase was statistically significant only for SD at 5% level. Kaolin had no significant effect on yield and water use efficiency (WUE), however, it had negative effect on yield efficiency (YE). Kaolin treatments also significantly increased fruit and leaf TPC (P< 0.01) but had no effect on leaf and fruit total antioxidant activity (AA), as well as fruit anthocyanin content (AC) and soluble proteins (SP). CONCLUSIONS: Irrigation at 85% ETc showed better results than 100% and 70% ETc levels for yield attributes. It seems that the more pronounced effect of kaolin on vegetative traits but not on the fruits, might be attributed to the early ripening and harvest time of the examined cultivars.


Asunto(s)
Malus/crecimiento & desarrollo , Sequías , Riego Agrícola/métodos , Frutas/crecimiento & desarrollo , Caolín/administración & dosificación , Estaciones del Año , Malus/efectos de los fármacos , Frutas/efectos de los fármacos
12.
Food Chem ; 141(1): 139-46, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23768339

RESUMEN

Dracocephalum kotschyi Boiss. (Lamiaceae) is an aromatic and perennial herb endemic to Iran with interesting pharmacological and biological properties. The flavonoids luteolin-7-O-glucoside, apigenin-7-O-glucoside (cosmosiin), luteolin 3'-O-ß-d-glucuronide, luteolin, apigenin, cirsimaritin, isokaempferide, penduletin, xanthomicrol, calycopterin and the polyphenol rosmarinic acid were identified among 13 natural populations of the plant by ESI-MS, LC-DAD and LC-DAD-ESI-MS. The plant extracts containing the identified compounds showed significant antioxidant activity, which was correlated with the flavonoid content. Additionally, leaf and stem size and geographical variability among the studied populations were correlated with flavonoid accumulation. Canonical correlation analysis was used to find a relationship between plant dimensions and phytochemical composition, and the plants with the lowest growth indices were found to have the highest levels of methoxylated flavonoids.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Flavonoides/química , Lamiaceae/química , Extractos Vegetales/química , Hojas de la Planta/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Irán , Lamiaceae/clasificación , Lamiaceae/crecimiento & desarrollo , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/clasificación , Hojas de la Planta/crecimiento & desarrollo
13.
Physiol Mol Biol Plants ; 17(3): 305-11, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23573023

RESUMEN

The amplified fragment length polymorphism (AFLP) technique was used to examine the genetic relationships among 21 Iranian soft-seeded pomegranate (Punica granatum L.) genotypes. Out of 72 fluorescent-AFLP primer combinations screened, 31 were selected to produce the 503 polymorphic markers used in this study. Genetic similarity estimates between genotypes, calculated by the Jaccard's similarity coefficient, ranged from 0.17 to 1.00, while the cophenetic correlation coefficient between the genetic similarities and the unweighted pair group method of arithmetic averages (UPGMA) dendrogram was 0.98. The AFLP-based UPGMA dendrogram revealed two groups within the genotypes at 0.33 similarity coefficient, which reflect fruit traits such as peel and aril color, and seed firmness, as well as region of origin. Our study shows that the use of molecular markers is essential during all steps of germplasm management to avoid genotype redundancy and mislabeling. The present study will be used as a reliable reference to discriminate among these genotypes, to aid management of germplasm collections used to breed new varieties for the Iranian pomegranate industry.

14.
Biochem Biophys Res Commun ; 371(1): 59-62, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18407832

RESUMEN

Genes encoding limonoid UDP-glucosyltransferase from albedo of six Citrus species with different levels of delayed bitterness are isolated and cloned in vector pTZ57R/T. Our results indicate that gene sequence of sweet lime (with intense juice delayed bitterness) have complete identity with Satsuma mandarin (without distinctive juice delayed bitterness). Also gene sequence of Marsh seedless grapefruit, local orange and Thompson navel orange (with mild juice delayed bitterness) have very similarity with Satsuma mandarin. On the other hand, this gene started to express 60, 120, and 210 days after full blooming in albedo of Satsuma mandarin, sweet oranges and sour orange, and both grapefruit and sweet lime, respectively. Expression pattern of limonoid glucosyltransferase gene in leaves was quite different with albedo. Thus, we supposed the delayed bitterness in this species was related to delay in expression of limonoid glucosyltransferase gene in albedo and lower limonoid glucoside accumulation in fruits.


Asunto(s)
Citrus/crecimiento & desarrollo , Citrus/genética , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Proteínas de Plantas/genética , Gusto , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Bebidas , Citrus/enzimología , Glucosiltransferasas/clasificación , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/clasificación , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...