Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1199357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415606

RESUMEN

Intracellular heme formation and trafficking are fundamental processes in living organisms. Bacteria and archaea utilize three biogenesis pathways to produce iron protoporphyrin IX (heme b) that diverge after the formation of the common intermediate uroporphyrinogen III (uro'gen III). In this study, we identify and provide a detailed characterization of the enzymes involved in the transformation of uro'gen III into heme in Campylobacter jejuni, demonstrating that this bacterium utilizes the protoporphyrin-dependent (PPD) pathway. In general, limited knowledge exists regarding the mechanisms by which heme b reaches its target proteins after this final step. Specifically, the chaperones necessary for trafficking heme to prevent the cytotoxic effects associated with free heme remain largely unidentified. In C. jejuni, we identified a protein named CgdH2 that binds heme with a dissociation constant of 4.9 ± 1.0 µM, and this binding is impaired upon mutation of residues histidine 45 and 133. We demonstrate that C. jejuni CgdH2 establishes protein-protein interactions with ferrochelatase, suggesting its role in facilitating heme transfer from ferrochelatase to CgdH2. Furthermore, phylogenetic analysis reveals that C. jejuni CgdH2 is evolutionarily distinct from the currently known chaperones. Therefore, CgdH2 is the first protein identified as an acceptor of intracellularly formed heme, expanding our knowledge of the mechanisms underlying heme trafficking within bacterial cells.

2.
mBio ; 14(1): e0330222, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36625597

RESUMEN

Aminoglycosides (AG) have been used against Gram-negative bacteria for decades. Yet, how bacterial metabolism and environmental conditions modify AG toxicity is poorly understood. Here, we show that the level of AG susceptibility varies depending on the nature of the respiratory chain that Escherichia coli uses for growth, i.e., oxygen, nitrate, or fumarate. We show that all components of the fumarate respiratory chain, namely, hydrogenases 2 and 3, the formate hydrogenlyase complex, menaquinone, and fumarate reductase are required for AG-mediated killing under fumarate respiratory conditions. In addition, we show that the AAA+ ATPase RavA and its Von Wildebrand domain-containing partner, ViaA, are essential for AG to act under fumarate respiratory conditions. This effect was true for all AG that were tested but not for antibiotics from other classes. In addition, we show that the sensitizing effect of RavA-ViaA is due to increased gentamicin uptake in a proton motive force-dependent manner. Interestingly, the sensitizing effect of RavA-ViaA was prominent in poor energy conservation conditions, i.e., with fumarate, but dispensable under high energy conservation conditions, i.e., in the presence of nitrate or oxygen. We propose that RavA-ViaA can facilitate uptake of AG across the membrane in low-energy cellular states. IMPORTANCE Antibiotic resistance is a major public health, social, and economic problem. Aminoglycosides (AG) are known to be highly effective against Gram-negative bacteria, but their use is limited to life-threatening infections because of their nephrotoxicity and ototoxicity at therapeutic dose. Elucidation of AG-sensitization mechanisms in bacteria would allow reduced effective doses of AG. Here, we have identified the molecular components involved in anaerobic fumarate respiration that are required for AG to kill. In addition to oxidoreductases and menaquinone, this includes new molecular players, RavA, an AAA+ ATPase, and ViaA, its partner that has the VWA motif. Remarkably, the influence of RavA-ViaA on AG susceptibility varies according to the type of bioenergetic metabolism used by E. coli. This is a significant advance because anaerobiosis is well known to reduce the antibacterial activity of AG. This study highlights the critical importance of the relationship between culture conditions, metabolism, and antibiotic susceptibility.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Aminoglicósidos/farmacología , Nitratos/metabolismo , Vitamina K 2/metabolismo , Vitamina K 2/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Metabolismo Energético , Succinato Deshidrogenasa , Bacterias/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Fumaratos/farmacología , Fumaratos/metabolismo , Anaerobiosis , Adenosina Trifosfatasas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
3.
PLoS Genet ; 16(11): e1009198, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137124

RESUMEN

The level of antibiotic resistance exhibited by bacteria can vary as a function of environmental conditions. Here, we report that phenazine-methosulfate (PMS), a redox-cycling compound (RCC) enhances resistance to fluoroquinolone (FQ) norfloxacin. Genetic analysis showed that E. coli adapts to PMS stress by making Fe-S clusters with the SUF machinery instead of the ISC one. Based upon phenotypic analysis of soxR, acrA, and micF mutants, we showed that PMS antagonizes fluoroquinolone toxicity by SoxR-mediated up-regulation of the AcrAB drug efflux pump. Subsequently, we showed that despite the fact that SoxR could receive its cluster from either ISC or SUF, only SUF is able to sustain efficient SoxR maturation under exposure to prolonged PMS period or high PMS concentrations. This study furthers the idea that Fe-S cluster homeostasis acts as a sensor of environmental conditions, and because its broad influence on cell metabolism, modifies the antibiotic resistance profile of E. coli.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Escherichia coli/fisiología , Proteínas Hierro-Azufre/metabolismo , Factores de Transcripción/metabolismo , Antibacterianos/uso terapéutico , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Antagonismo de Drogas , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Metosulfato de Metilfenazonio/farmacología , Pruebas de Sensibilidad Microbiana , Norfloxacino/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética
4.
Nature ; 559(7713): 259-263, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973719

RESUMEN

The spread of antimicrobial resistance has become a serious public health concern, making once-treatable diseases deadly again and undermining the achievements of modern medicine1,2. Drug combinations can help to fight multi-drug-resistant bacterial infections, yet they are largely unexplored and rarely used in clinics. Here we profile almost 3,000 dose-resolved combinations of antibiotics, human-targeted drugs and food additives in six strains from three Gram-negative pathogens-Escherichia coli, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa-to identify general principles for antibacterial drug combinations and understand their potential. Despite the phylogenetic relatedness of the three species, more than 70% of the drug-drug interactions that we detected are species-specific and 20% display strain specificity, revealing a large potential for narrow-spectrum therapies. Overall, antagonisms are more common than synergies and occur almost exclusively between drugs that target different cellular processes, whereas synergies are more conserved and are enriched in drugs that target the same process. We provide mechanistic insights into this dichotomy and further dissect the interactions of the food additive vanillin. Finally, we demonstrate that several synergies are effective against multi-drug-resistant clinical isolates in vitro and during infections of the larvae of the greater wax moth Galleria mellonella, with one reverting resistance to the last-resort antibiotic colistin.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/efectos de los fármacos , Animales , Benzaldehídos/farmacología , Colistina/farmacología , Combinación de Medicamentos , Interacciones Farmacológicas , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Sinergismo Farmacológico , Escherichia coli/clasificación , Escherichia coli/efectos de los fármacos , Aditivos Alimentarios/farmacología , Larva/efectos de los fármacos , Larva/microbiología , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/microbiología , Filogenia , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/efectos de los fármacos , Salmonella typhimurium/clasificación , Salmonella typhimurium/efectos de los fármacos , Especificidad de la Especie
5.
J Mol Biol ; 430(18 Pt B): 3143-3156, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30031895

RESUMEN

Contractile injection systems are multiprotein complexes that use a spring-like mechanism to deliver effectors into target cells. In addition to using a conserved mechanism, these complexes share a common core known as the tail. The tail comprises an inner tube tipped by a spike, wrapped by a contractile sheath, and assembled onto a baseplate. Here, using the type VI secretion system (T6SS) as a model of contractile injection systems, we provide molecular details on the interaction between the inner tube and the spike. Reconstitution into the Escherichia coli heterologous host in the absence of other T6SS components and in vitro experiments demonstrated that the Hcp tube component and the VgrG spike interact directly. VgrG deletion studies coupled to functional assays showed that the N-terminal domain of VgrG is sufficient to interact with Hcp, to initiate proper Hcp tube polymerization, and to promote sheath dynamics and Hcp release. The interaction interface between Hcp and VgrG was then mapped using docking simulations, mutagenesis, and cysteine-mediated cross-links. Based on these results, we propose a model in which the VgrG base serves as adaptor to recruit the first Hcp hexamer and initiates inner tube polymerization.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Hemolisinas/química , Complejos Multiproteicos/química , Proteínas Bacterianas/metabolismo , Disulfuros , Proteínas Hemolisinas/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Relación Estructura-Actividad , Sistemas de Secreción Tipo VI
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...