Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 87(1): 48, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409540

RESUMEN

In aquatic ecosystems, zooplankton-associated bacteria potentially have a great impact on the structure of ecosystems and trophic networks by providing various metabolic pathways and altering the ecological niche of host species. To understand the composition and drivers of zooplankton gut microbiota, we investigated the associated microbial communities of four zooplankton genera from different seasons in the Baltic Sea using the 16S rRNA gene. Among the 143 ASVs (amplified sequence variants) observed belonging to heterotrophic bacteria, 28 ASVs were shared across all zooplankton hosts over the season, and these shared core ASVs represented more than 25% and up to 60% of relative abundance in zooplankton hosts but were present at low relative abundance in the filtered water. Zooplankton host identity had stronger effects on bacterial composition than seasonal variation, with the composition of gut bacterial communities showing host-specific clustering patterns. Although bacterial compositions and dominating core bacteria were different between zooplankton hosts, higher gut bacteria diversity and more bacteria contributing to the temporal variation were found in Temora and Pseudocalanus, compared to Acartia and Synchaeta. Diet diatom and filamentous cyanobacteria negatively correlated with gut bacteria diversity, but the difference in diet composition did not explain the dissimilarity of gut bacteria composition, suggesting a general effect of diet on the inner conditions in the zooplankton gut. Synchaeta maintained high stability of gut bacterial communities with unexpectedly low bacteria-bacteria interactions as compared to the copepods, indicating host-specific regulation traits. Our results suggest that the patterns of gut bacteria dynamics are host-specific and the variability of gut bacteria is not only related to host taxonomy but also related to host behavior and life history traits.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Rotíferos , Animales , Zooplancton/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Bacterias , Microbioma Gastrointestinal/genética
2.
Proc Biol Sci ; 288(1953): 20210908, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34130506

RESUMEN

Alternative pathways of energy transfer guarantee the functionality and productivity in marine food webs that experience strong seasonality. Nevertheless, the complexity of zooplankton interactions is rarely considered in trophic studies because of the lack of detailed information about feeding interactions in nature. In this study, we used DNA metabarcoding to highlight the diversity of trophic niches in a wide range of micro- and mesozooplankton, including ciliates, rotifers, cladocerans, copepods and their prey, by sequencing 16- and 18S rRNA genes. Our study demonstrates that the zooplankton trophic niche partitioning goes beyond both phylogeny and size and reinforces the importance of diversity in resource use for stabilizing food web efficiency by allowing for several different pathways of energy transfer. We further highlight that small, rarely studied zooplankton (rotifers and ciliates) fill an important role in the Baltic Sea pelagic primary production pathways and the potential of ciliates, rotifers and crustaceans in the utilization of filamentous and picocyanobacteria within the pelagic food web. The approach used in this study is a suitable entry point to ecosystem-wide food web modelling considering species-specific resource use of key consumers.


Asunto(s)
Copépodos , Ecosistema , Animales , Países Bálticos , Copépodos/genética , Código de Barras del ADN Taxonómico , Cadena Alimentaria , Zooplancton/genética
3.
Mol Ecol ; 29(17): 3380-3395, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32681684

RESUMEN

Knowledge of zooplankton in situ diet is critical for accurate assessment of marine ecosystem function and structure, but due to methodological constraints, there is still a limited understanding of ecological networks in marine ecosystems. Here, we used DNA-metabarcoding to study trophic interactions, with the aim to unveil the natural diet of zooplankton species under temporal variation of food resources. Several target consumers, including copepods and cladocerans, were investigated by sequencing 16S rRNA and 18S rRNA genes to identify prokaryote and eukaryote potential prey present in their guts. During the spring phytoplankton bloom, we found a dominance of diatom and dinoflagellate trophic links to copepods. During the summer period, zooplankton including cladocerans showed a more diverse diet dominated by cyanobacteria and heterotrophic prey. Our study suggests that copepods present trophic plasticity, changing their natural diet over seasons, and adapting their feeding strategies to the available prey spectrum, with some species being more selective. We did not find a large overlap of prey consumed by copepods and cladocerans, based on prey diversity found in their guts, suggesting that they occupy different roles in the trophic web. This study represents the first molecular approach to investigate several zooplankton-prey associations under seasonal variation, and highlights how, unlike other techniques, the diversity coverage is high when using DNA, allowing the possibility to detect a wide range of trophic interactions in plankton communities.


Asunto(s)
Ecosistema , Plancton , Animales , ADN , Código de Barras del ADN Taxonómico , Cadena Alimentaria , Plancton/genética , ARN Ribosómico 16S/genética , Zooplancton/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...