Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
J Agric Food Chem ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996051

RESUMEN

Milk fat synthesis has garnered significant attention due to its influence on the quality of milk. Recently, an increasing amount of proofs have elucidated that microRNAs (miRNAs) are important post-transcriptional factor involved in regulating gene expression and play a significant role in milk fat synthesis. MiR-200a was differentially expressed in the mammary gland tissue of dairy cows during different lactation periods, which indicated that miR-200a was a candidate miRNA involved in regulating milk fat synthesis. In our research, we investigated the potential function of miR-200a in regulating milk fat biosynthesis in bovine mammary epithelial cells (BMECs). We discovered that miR-200a inhibited cellular triacylglycerol (TAG) synthesis and suppressed lipid droplet formation; at the same time, miR-200a overexpression suppressed the mRNA and protein expression of milk fat metabolism-related genes, such as fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), CCAAT enhancer binding protein alpha (CEBPα), etc. However, knocking down miR-200a displayed the opposite results. We uncovered that insulin receptor substrate 2 (IRS2) was a candidate target gene of miR-200a through the bioinformatics online program TargetScan. Subsequently, it was confirmed that miR-200a directly targeted the 3'-untranslated region (3'-UTR) of IRS2 via real-time fluorescence quantitative PCR (RT-qPCR), western blot analysis, and dual-luciferase reporter gene assay. Additionally, IRS2 knockdown in BMECs has similar effects to miR-200a overexpression. Our research set up the mechanism by which miR-200a interacted with IRS2 and discovered that miR-200a targeted IRS2 and modulated the activity of the PI3K/Akt signaling pathway, thereby taking part in regulating milk fat synthesis in BMECs. Our research results provided valuable information on the molecular mechanisms for enhancing milk quality from the view of miRNA-mRNA regulatory networks.

2.
Int J Biol Macromol ; 275(Pt 2): 133592, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960265

RESUMEN

Antisense long non-coding RNAs (lncRNAs) played a crucial role in the precise regulation of essential biological processes and were abundantly present in animals. Many of these antisense lncRNAs have been identified as key roles in adipose tissue accumulation in livestock, underscoring their vital role in the regulation of animal physiology. Nonetheless, the functional roles of these antisense lncRNAs in regulating adipogenesis and the specific molecular mechanisms these processes were still unclear, which was a significant gap in current scientific research. In this study, we identified and characterized SERPINE1AS2, a novel natural antisense lncRNA, was highly expressed in the fat tissues of adult cattle and calves. Its expression gradually increased during the differentiation of intramuscular adipocytes. Through functional studies, we observed that knockdown of SERPINE1AS2 inhibited the proliferation and adipogenesis of intramuscular adipocytes, while overexpression of SERPINE1AS2 produced the opposite effect. RNA sequencing (RNA-seq) analysis following SERPINE1AS2 knockdown revealed that differential expression genes (DEGs) were significantly enriched in key signaling pathways, notably the MAPK, Wnt, and mTOR signaling pathways. Furthermore, SERPINE1AS2 interacted with Plasminogen Activator Inhibitor-1 (PAI1), forming RNA dimers through complementary base pairing and consequently influencing PAI1 expression. Interestingly, studies on PAI1 suggested that reduced expression facilitated adipogenesis and the downregulation of PAI1 alleviated the inhibitory effect of reduced SERPINE1AS2 on adipogenesis. In summary, this study suggested that SERPINE1AS2 played a crucial role in the adipogenesis of bovine intramuscular adipocytes by modulating the expression of PAI1. SERPINE1AS2 also regulated adipogenesis by engaging in the MAPK, Wnt, and mTOR signaling pathways. Our results suggested that SERPINE1AS2 had a complex regulatory mechanism on adipogenesis in intramuscular adipocytes.

3.
Int J Biol Macromol ; : 133650, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971288

RESUMEN

Consumers are more inclined to choose beef with a high intramuscular fat content (IMF), which regulated by lots of factors. It is very significant to find a miRNA that plays a key role in the accumulation of IMF. In our study, we found that bta-miR-330 was highly expressed in Japanese black cattle and differentially expressed at intramuscular pre-adipocytes differentiation processes. Furthermore, we transfected the bta-miR-330 mimic & inhibitor in intramuscular pre-adipocytes. The results showed that bta-miR-330 inhibits the proliferation but promotes the adipogenesis of intramuscular pre-adipocytes. Subsequently, our study showed that bta-miR-330 binds to SESN3, which inhibits the adipogenesis of intramuscular pre-adipocytes. Moreover, we established the mechanism that bta-miR-330 promotes the adipogenesis of intramuscular pre-adipocytes by targeting SESN3 to activate the Akt-mTOR signaling pathway. Overall, our results revealed that bta-miR-330-SESN3-Akt-mTOR axis plays an important role in adipogenesis of intramuscular pre-adipocytes, which provides a molecular basis for increasing IMF content in beef cattle.

4.
BMC Genomics ; 25(1): 558, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834950

RESUMEN

BACKGROUND: Indigenous Chinese cattle have abundant genetic diversity and a long history of artificial selection, giving local breeds advantages in adaptability, forage tolerance and resistance. The detection of selective sweeps and comparative genome analysis of selected breeds and ancestral populations provide a basis for understanding differences among breeds and for the identification and utilization of candidate genes. We investigated genetic diversity, population structure, and signatures of selection using genome-wide sequencing data for a new breed of Qinchuan cattle (QNC, n = 21), ancestral Qinchuan cattle (QCC, n = 20), and Zaosheng cattle (ZSC, n = 19). RESULTS: A population structure analysis showed that the ancestry components of QNC and ZSC were similar. In addition, the QNC and ZSC groups showed higher proportions of European taurine ancestry than that of QCC, and this may explain the larger body size of QNC, approaching that of European cattle under long-term domestication and selection. A neighbor-joining tree revealed that QCC individuals were closely related, whereas QNC formed a distinct group. To search for signatures of selection in the QNC genome, we evaluated nucleotide diversity (θπ), the fixation index (FST) and Tajima's D. Overlapping selective sweeps were enriched for one KEGG pathway, the apelin signaling pathway, and included five candidate genes (MEF2A, SMAD2, CAMK4, RPS6, and PIK3CG). We performed a comprehensive review of genomic variants in QNC, QCC, and ZSC using whole-genome sequencing data. QCC was rich in novel genetic diversity, while diversity in QNC and ZSC cattle was reduced due to strong artificial selection, with divergence from the original cattle. CONCLUSIONS: We identified candidate genes associated with production traits. These results support the success of selective breeding and can guide further breeding and resource conservation of Qinchuan cattle.


Asunto(s)
Variación Genética , Selección Genética , Animales , Bovinos/genética , Genómica/métodos , Polimorfismo de Nucleótido Simple , Genética de Población , Estudio de Asociación del Genoma Completo , Genoma , Cruzamiento
5.
Anim Biotechnol ; 35(1): 2345238, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38775564

RESUMEN

Tropomyosin 3 (TPM3) plays a significant role as a regulatory protein in muscle contraction, affecting the growth and development of skeletal muscles. Despite its importance, limited research has been conducted to investigate the influence of TPM3 on bovine skeletal muscle development. Therefore, this study revealed the role of TPM3 in bovine myoblast growth and development. This research involved conducting a thorough examination of the Qinchuan cattle TPM3 gene using bioinformatics tools to examine its sequence and structural characteristics. Furthermore, TPM3 expression was evaluated in various bovine tissues and cells using quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that the coding region of TPM3 spans 855 bp, with the 161st base being the T base, encoding a protein with 284 amino acids and 19 phosphorylation sites. This protein demonstrated high conservation across species while displaying a predominant α-helix secondary structure despite being an unstable acidic protein. Notably, a noticeable increase in TPM3 expression was observed in the longissimus dorsi muscle and myocardium of calves and adult cattle. Expression patterns varied during different stages of myoblast differentiation. Functional studies that involved interference with TPM3 in Qinchuan cattle myoblasts revealed a very significantly decrease in S-phase cell numbers and EdU-positive staining (P < 0.01), and disrupted myotube morphology. Moreover, interference with TPM3 resulted in significantly (P < 0.05) or highly significantly (P < 0.01) decreased mRNA and protein levels of key proliferation and differentiation markers, indicating its role in the modulation of myoblast behavior. These findings suggest that TPM3 plays an essential role in bovine skeletal muscle growth by influencing myoblast proliferation and differentiation. This study provides a foundation for further exploration into the mechanisms underlying TPM3-mediated regulation of bovine muscle development and provides valuable insights that could guide future research directions as well as potential applications for livestock breeding and addressing muscle-related disorders.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Clonación Molecular , Mioblastos , Tropomiosina , Animales , Bovinos/genética , Tropomiosina/genética , Tropomiosina/metabolismo , Tropomiosina/química , Diferenciación Celular/genética , Mioblastos/metabolismo , Mioblastos/citología , Músculo Esquelético , Secuencia de Aminoácidos , Desarrollo de Músculos/genética
6.
Mol Genet Genomics ; 299(1): 48, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700639

RESUMEN

Intramuscular fat (IMF) is a critical factor in beef quality. IMF is mainly distributed between muscle fibres and its accumulation can affect the marbling and meat quality of beef. IMF formation and deposition is a complex process and in recent years a group of non-coding RNAs (ncRNAs), known as circRNAs, have been discovered to play an important role in regulating intramuscular fat deposition. CircRNAs form a covalent loop structure after reverse splicing of precursor mRNAs. They can act by adsorbing miRNAs, thereby reducing their repressive effects on downstream target genes. Based on high-throughput sequencing of circRNAs in intramuscular fat of Qinchuan and Japanese black cattle, we identified a novel circSSBP2 that is differentially expressed between the two species and associated with adipogenesis. We show that circSSBP2 knockdown promotes bovine intramuscular preadipocyte proliferation, whereas overexpression inhibits bovine intramuscular preadipocyte proliferation. We also show that circSSBP2 can act as a molecular sponge for miR-2400 and that miR-2400 overexpression promotes bovine intramuscular preadipocyte proliferation. Furthermore, N-myc downstream-regulated gene 1 (NDRG1) was identified as a direct target gene of miR-2400, and NDRG1 interference promoted the proliferation of bovine intramuscular preadipocytes. In conclusion, our results suggest that circSSBP2 inhibits the proliferation of bovine intramuscular preadipocytes by regulating the miR-2400/NDRG1 axis.


Asunto(s)
Adipocitos , Adipogénesis , Proteínas de Ciclo Celular , Proliferación Celular , Péptidos y Proteínas de Señalización Intracelular , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Bovinos , Adipocitos/metabolismo , Adipocitos/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Adipogénesis/genética , ARN Circular/genética , Regulación de la Expresión Génica
7.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38766769

RESUMEN

Skeletal muscle is an important component of livestock and poultry organisms. The proliferation and differentiation of myoblasts are highly coordinated processes, which rely on the regulation of miRNA. MiRNAs are widely present in organisms and play roles in various biological processes, including cell proliferation, differentiation, and apoptosis. MiR-181d and miR-196a, identified as tumor suppressors, have been found to be involved in cell proliferation, apoptosis, directed differentiation, and cancer cell invasion. However, their role in beef cattle skeletal muscle metabolism remains unclear. In this study, we discovered that overexpression of bta-miR-181d and bta-miR-196a in Qinchuan cattle myoblasts inhibited proliferation and apoptosis while promoting myogenic differentiation through EDU staining, flow cytometry analysis, immunofluorescence staining, and Western blotting. RNA-seq analysis of differential gene expression revealed that after overexpression of bta-miR-181d and bta-miR-196a, the differentially expressed genes were mainly enriched in the PI3K-Akt and MAPK signaling pathways. Furthermore, the phosphorylation levels of key proteins p-AKT in the PI3K signaling pathway and p-MAPK in the MAPK signaling pathway were significantly decreased after overexpression of bta-miR-181d and bta-miR-196a. Overall, this study provides preliminary evidence that bta-miR-181d and bta-miR-196a may regulate proliferation, apoptosis, and differentiation processes in Qinchuan cattle myoblasts by affecting the phosphorylation status of key proteins in PI3K-Akt and MAPK-ERK signaling pathways.


In this research, we explored the functions of two specific microRNAs, bta-miR-181d and bta-miR-196a, in the muscle cells of Qinchuan cattle. These tiny molecules are known to play crucial roles in various cellular processes. Our findings reveal that these microRNAs significantly influence cell growth, death, and differentiation in muscle cells through their interactions with the AKT and MAPK signaling pathways. This study not only expands our understanding of the miR-181 and miR-196 families but also sheds light on the broader role of microRNAs in the development and growth of skeletal muscles. These insights could have important implications for animal husbandry and the study of muscle biology.


Asunto(s)
Apoptosis , Diferenciación Celular , Proliferación Celular , MicroARNs , Animales , Bovinos/genética , MicroARNs/genética , MicroARNs/metabolismo , Mioblastos/metabolismo , Desarrollo de Músculos , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética
8.
J Agric Food Chem ; 72(22): 12641-12654, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38780097

RESUMEN

As cellular transcription factors and DNA replicators, nuclear factor I (NFI) family members play an important role in mammalian development. However, there is still a lack of research on the muscle regeneration of NFI family members in cattle. In this study, the analysis of NFI family factors was conducted on their characterization, phylogenetics, and functional domains. We found that NFI family members were relatively conserved among different species, but there was heterogeneity in amino acid sequences, DNA coding sequences, and functional domain among members. Furthermore, among NFI family factors, we observed that NFIC exhibited highly expression in bovine muscle tissues, particularly influencing the expression of proliferation marker genes in myoblasts. To investigate the influence of NFIC on myoblast proliferation, we knocked down NFIC (si-NFIC) and found that the proliferation of myoblasts was significantly promoted. In terms of regulation mechanism, we identified that si-NFIC could counteract the inhibitory effect of the cell cycle inhibitor RO-3306. Interestingly, CENPF, as the downstream target gene of NFIC, could affect the expression of CDK1, CCNB1, and actively regulate the cell cycle pathway and cell proliferation. In addition, when CENPF was knocked down, the phosphorylation of p53 and the expression of Bax were increased, but the expression of Bcl2 was inhibited. Our findings mainly highlight the mechanism by which NFIC acts on the CENPF/CDK1 axis to regulate the proliferation of bovine myoblasts.


Asunto(s)
Proteína Quinasa CDC2 , Proliferación Celular , Mioblastos , Factores de Transcripción NFI , Animales , Bovinos , Mioblastos/metabolismo , Mioblastos/citología , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Técnicas de Silenciamiento del Gen , Ciclo Celular
9.
J Agric Food Chem ; 72(17): 9656-9668, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642059

RESUMEN

Intramuscular fat is a crucial determinant of carcass quality traits like tenderness and taste, which in turn is influenced by the proliferation of intramuscular preadipocytes. This study aimed to investigate the Krüppel-like factor 6 (KLF6)-mediated proliferation of bovine preadipocytes and identify underlying molecular mechanisms. Down-regulation of KLF6 by siKLF6 resulted in a significant (p < 0.01) suppression of cell cycle-related genes including CDK1, MCM6, ZNF4, PCNA, CDK2, CCNB1, and CDK6. Conversely, the expression level of p27 was significantly (p < 0.01) increased. Moreover, EdU (5-ethynyl-20-deoxyuridine) staining revealed a significant decrease in EdU-labeled cells due to KLF6 down-regulation. Collectively, these findings indicate that KLF6 down-regulation inhibits adipocyte proliferation. Furthermore, RNA sequencing of preadipocytes transfected with siKLF6 and NC, followed by differential gene expression analysis, identified 100 up-regulated and 70 down-regulated genes. Additionally, the differentially expressed genes also significantly influenced various Gene Ontology (GO) terms related to cell cycle, nuclear chromosomes, and catalytic activity on DNA. Furthermore, the top 20 pathways enriched in these DEGs included cell cycle, DNA replication, cellular senescence, and homologous recombination. These GO terms and KEGG pathways play key roles in bovine preadipocyte proliferation. In conclusion, the results of this study suggest that KLF6 positively regulates the proliferation of bovine preadipocytes.


Asunto(s)
Adipocitos , Proliferación Celular , Factor 6 Similar a Kruppel , Animales , Bovinos/metabolismo , Bovinos/genética , Adipocitos/metabolismo , Adipocitos/citología , Factor 6 Similar a Kruppel/genética , Factor 6 Similar a Kruppel/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Ciclo Celular , Carne Roja/análisis
10.
Anim Biotechnol ; 35(1): 2339406, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38634284

RESUMEN

Fat deposition affects beef quantity and quality via preadipocyte proliferation. Beta-sitosterol, a natural small molecular compound, has various functions, such as anti-inflammation, antibacterial, and anticancer properties. The mechanism of action of Beta-sitosterol on bovine preadipocytes remains unclear. This study, based on RNA-seq, reveals the impact of Beta -sitosterol on the proliferation of bovine preadipocytes. Compared to the control group, Beta-sitosterol demonstrated a more pronounced inhibitory effect on cell proliferation after 48 hours of treatment than after 24 hours, as evidenced by the results of EdU staining and flow cytometry. RNA-seq and Western Blot analyses further substantiated these findings. Our results suggest that the impact of Beta-sitosterol on the proliferation of bovine preadipocytes is not significant after a 24-hour treatment. It is only after extending the treatment time to 48 hours that Beta-sitosterol may induce cell cycle arrest at the G2/M phase by suppressing the expression of CCNB1, thereby inhibiting the proliferation of bovine preadipocytes.


Asunto(s)
Adipocitos , Proliferación Celular , Sitoesteroles , Animales , Bovinos , Sitoesteroles/farmacología , Proliferación Celular/efectos de los fármacos , Adipocitos/efectos de los fármacos , Adipocitos/citología , Perfilación de la Expresión Génica , Células Cultivadas , Transcriptoma/efectos de los fármacos
11.
Mol Biotechnol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528286

RESUMEN

There is increasing evidence indicating that global temperatures are rising significantly, a phenomenon commonly referred to as 'global warming', which in turn is believed to be causing drastic changes to the global climate. Global warming (GW) directly impacts animal health, reproduction, production, and welfare, presenting several challenges to livestock enterprises. Thermal stress (TS) is one of the key consequences of GW, and all animal species, including livestock, have diverse physiological, epigenetic and genetic mechanisms to respond to TS. As a result, TS can significantly affect an animals' health, immune responsiveness, metabolic pathways etc. which can also influence the productivity, performance, and welfare of animals. Moreover, prolonged exposure to TS can lead to transgenerational and intergenerational changes that are mediated by epigenetic changes. For example, in several animal species, the effects of TS are encoded epigenetically during the animals' growth or productive stage, and these epigenetic changes can be transmitted intergenerationally. Such epigenetic changes can affect animal productivity by changing the phenotype so that it aligns with its ancestors' environment, irrespective of its immediate environment. Furthermore, epigenetic and genetic changes can also help protect cells from the adverse effects of TS by modulating the transcriptional status of heat-responsive genes in animals. This review focuses on the genetic and epigenetic modulation and regulation that occurs in TS conditions via HSPs, histone alterations and DNA methylation.

12.
Genomics ; 116(2): 110817, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38431031

RESUMEN

Perilipin-2 (PLIN2) can anchor to lipid droplets (LDs) and play a crucial role in regulating nascent LDs formation. Bimolecular fluorescence complementation (BiFC) and flow cytometry were examined to verify the PLIN2-CGI-58 interaction efficiency in bovine adipocytes. GST-Pulldown assay was used to detect the key site arginine315 function in PLIN2-CGI-58 interaction. Experiments were also examined to research these mutations function of PLIN2 in LDs formation during adipocytes differentiation, LDs were measured after staining by BODIPY, lipogenesis-related genes were also detected. Results showed that Leucine (L371A, L311A) and glycine (G369A, G376A) mutations reduced interaction efficiencies. Serine (S367A) mutations enhanced the interaction efficiency. Arginine (R315A) mutations resulted in loss of fluorescence in the cytoplasm and disrupted the interaction with CGI-58, as verified by pulldown assay. R315W mutations resulted in a significant increase in the number of LDs compared with wild-type (WT) PLIN2 or the R315A mutations. Lipogenesis-related genes were either up- or downregulated when mutated PLIN2 interacted with CGI-58. Arginine315 in PLIN2 is required for the PLIN2-CGI-58 interface and could regulate nascent LD formation and lipogenesis. This study is the first to study amino acids on the PLIN2 interface during interaction with CGI-58 in bovine and highlight the role played by PLIN2 in the regulation of bovine adipocyte lipogenesis.


Asunto(s)
Arginina , Gotas Lipídicas , Animales , Bovinos , Perilipina-2/genética , Perilipina-2/química , Perilipina-2/metabolismo , Arginina/genética , Arginina/metabolismo , Gotas Lipídicas/metabolismo , Mutación , Adipocitos/metabolismo , Metabolismo de los Lípidos
13.
J Agric Food Chem ; 72(6): 2911-2924, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38303491

RESUMEN

The intramuscular fat (IMF) content of beef determined the meat quality, and the market value of beef varies with different breeds. To provide some new approaches for improving meat quality and cattle breed improvement, 24-month-old Qinchuan cattle (Q, n = 6), Nanyang cattle (N, n = 6), and Japanese black cattle (J, n = 6) were selected. IMF content of the J group (16.92 ± 1.08%) is remarkably higher than that of indigenous Chinese cattle (Q, 13.38 ± 1.08%, and N, 12.35 ± 1.22%). Monounsaturated fatty acids and polyunsaturated fatty acids in the J group are higher than the Q and creatine, lysine, and glutamine are the three most abundant amino acids in beef, which contribute to the flavor formation. Similarly, IMF content-related genes were enriched in four vital KEGG pathways, including fatty acid metabolism, biosynthesis of unsaturated fatty acids, fatty acid elongation, and insulin resistance. Moreover, weighted genes coexpression network analysis (WGCNA) revealed that ITGB1 is the critical gene associated with the IMF content. This study compares transcriptome and metabolome of local and high-IMF cattle breeds, providing data for native cattle breeding and improvement of beef quality.


Asunto(s)
Carne , Transcriptoma , Bovinos/genética , Animales , Ácidos Grasos Insaturados/metabolismo , Metaboloma , Músculo Esquelético/metabolismo
14.
Gene ; 908: 148295, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38387707

RESUMEN

Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.


Asunto(s)
Epigenómica , Hipercolesterolemia , Bovinos/genética , Animales , Músculo Esquelético/metabolismo , Regulación de la Expresión Génica , Adipogénesis/genética , Hipercolesterolemia/metabolismo , Epigénesis Genética
15.
Int J Biol Macromol ; 259(Pt 1): 129134, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176502

RESUMEN

The purpose of this study was to develop a novel edible scaffold by utilizing yeast proteins, which could partially replace collagen and produce hypoallergenic, odorless, and highly nutritious cell-cultured meat that meets the demands of a more significant number of consumers. The scaffold comprised proanthocyanidins, dialdehyde chitosan, collagen, and different proportions of yeast proteins (YP). The results indicated that the scaffold possessed excellent mechanical properties and biocompatibility, and supported cell proliferation and myogenic differentiation. Additionally, we evaluated the texture characteristics of the cultured meat models and traditional beef and discovered that the YP30 cultured meat model had similar springiness and chewiness as beef. Subsequently, further analyzed the similarity between the cultured meat models and traditional beef in appearance, taste, and nutrition. Further results illustrated that the yeast protein cultured meat model exhibited a complete model structure and comparable color and taste to beef after frying. Moreover, it was concluded that the protein content of the YP30 cultured meat model was closer to that of beef. These findings suggested that the edible scaffold using yeast proteins has enormous potential to facilitate the sustainable development of the cell-cultured meat industry.


Asunto(s)
Quitosano , Carne in Vitro , Bovinos , Animales , Carne/análisis , Proteínas Fúngicas , Colágeno
16.
Vet Res Commun ; 48(1): 391-401, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37733150

RESUMEN

Bovine reproduction, including male fertility traits like semen quality, are influenced by a variety of different factors like breed, nutrition, environment, and feeding management. Diet in a crucial determinant, and in this regard although corn silage is generally considered to be a favorable roughage for fattening meat type breeds, it tends to have a negative impact on semen quality. In the current study, alfalfa hay was substituted by corn silage as a roughage source in the diet of bulls to investigate its effects on the fertility of breeding bulls. A feeding trail spanning 140 days was conducted, with semen collection occurring twice a week commencing 60 days after the start of trial. Semen quality parameters, serum antioxidant indexes, sex hormone content in semen, rumen microflora, and sperm transcriptome were characterized. Feeding corn silage enhanced host antioxidant capacity, significantly decreased spermatozoal motility and increased sperm deformity rate in bulls. Furthermore, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) content in semen were significantly decreased (P < 0.05), and the inhibin B (INHB) content was significantly increased (P < 0.01). Feeding corn silage led to significant changes in the diversity of rumen microbiota of cattle at the phylum and genus levels, some of which were significantly correlated with semen quality. Subsequent RNA sequencing indicated that DHH and PITHD1, two genes related to sperm and reproductive development, were differentially expressed, and enrichment analysis also identified several pathways and biological functions relevant to sperm development and reproduction. These results indicate that feeding corn silage modulates semen quality via different pathways. Firstly, corn silage metabolites likely affect the secretion of INHB through the testicular capillaries, which affects semen quality by regulating genes involved in spermatogenesis. Secondly, low lignin content in silage corn appears to reduce abundance of rumen flora that are positively correlated with semen quality. Overall, results indicate that feeding bulls corn silage as the primary source of forage could negatively impact semen quality and may not be appropriate as the primary roughage of forage for breeding bulls.


Asunto(s)
Análisis de Semen , Ensilaje , Animales , Masculino , Bovinos , Análisis de Semen/veterinaria , Zea mays , Antioxidantes , Fitomejoramiento , Semillas , Dieta/veterinaria , Espermatogénesis/fisiología , Rumen , Fibras de la Dieta/metabolismo
17.
J Anim Breed Genet ; 141(3): 235-256, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38146089

RESUMEN

In the past few decades, genomic selection and other refined strategies have been used to increase the growth rate and lean meat production of beef cattle. Nevertheless, the fast growth rates of cattle breeds are often accompanied by a reduction in intramuscular fat (IMF) deposition, impairing meat quality. Transcription factors play vital roles in regulating adipogenesis and lipogenesis in beef cattle. Meanwhile, understanding the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle has gained significant attention to increase IMF deposition and meat quality. Therefore, the aim of this paper was to provide a comprehensive summary and valuable insight into the complex role of transcription factors in adipogenesis and lipogenesis in beef cattle. This review summarizes the contemporary studies in transcription factors in adipogenesis and lipogenesis, genome-wide analysis of transcription factors, epigenetic regulation of transcription factors, nutritional regulation of transcription factors, metabolic signalling pathways, functional genomics methods, transcriptomic profiling of adipose tissues, transcription factors and meat quality and comparative genomics with other livestock species. In conclusion, transcription factors play a crucial role in promoting adipocyte development and fatty acid biosynthesis in beef cattle. They control adipose tissue formation and metabolism, thereby improving meat quality and maintaining metabolic balance. Understanding the processes by which these transcription factors regulate adipose tissue deposition and lipid metabolism will simplify the development of marbling or IMF composition in beef cattle.


Asunto(s)
Adipogénesis , Lipogénesis , Bovinos/genética , Animales , Lipogénesis/genética , Adipogénesis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Epigénesis Genética , Tejido Adiposo/metabolismo , Músculo Esquelético/metabolismo
18.
Food Res Int ; 175: 113757, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129054

RESUMEN

Cultured meat has the potential to fulfill the meat demand for the growing human population, but cultured meat development will be required to simplify the production process and produce naturally cultured meat, such as no longer stripping off scaffolders and adding artificial dyes. In this study, proanthocyanidins (PC) and dialdehyde chitosan (DAC) were employed as dual crosslinkers with collagen to prepare a hybrid 3D edible scaffold for the production of high-quality cell-cultured meat. The results revealed that the scaffold was biocompatible and could offer robust mechanical support and adhesion sites for bovine myoblasts, enabling long-term cell culture. Meanwhile, the Col-PC-DAC scaffold promoted the myogenic differentiation of bovine myoblasts and extracellular matrix protein secretion, further affecting the texture of cultured meat. After cooking the cultured meat and beef, it was shown that the cultured meat had some similarities to beef in color and flavor. Importantly, our findings demonstrate that cultured meat can acquire a color remarkably similar to that of conventional beef without the need for artificial dyeing. This breakthrough not only simplifies the production process but also ensures a more natural and appealing appearance of cultured meat. In conclusion, the proanthocyanidins-dialdehyde chitosan-collagen hybrid 3D edible scaffolds provide a new option for producing cultured meat that satisfies consumer expectations.


Asunto(s)
Quitosano , Proantocianidinas , Animales , Bovinos , Humanos , Andamios del Tejido , Carne in Vitro , Colágeno
19.
Animals (Basel) ; 13(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38066979

RESUMEN

A genome-wide association study (GWAS) is an effective tool for identifying the dominant genes of complex economic traits in livestock by statistical analysis of genotype data and measured phenotype data. In this study, we rigorously measured 14 body conformation traits in 254 Qinchuan cattle, comprising body weight (BW), body height (BOH), back height (BAH), buttock height (BUH), chest depth (CD), chest width (CW), hip cross height (HCH), body length (BL), hip width (HW), rump length (RL), pin bone width (PBW), chest girth (CG), abdomen circumference (AG), and calf circumference (CC). After quality control, 281,889 SNPs were generated for GWAS with different traits. A total of 250 suggestive SNPs (p < 3.54 × 10-6) were screened and 37 candidate genes were annotated. Furthermore, we performed a linkage disequilibrium analysis of SNP loci and considered published studies, identifying the eight genes (ADAMTS17, ALDH1A3, CHSY1, MAGEL2, MEF2A, SYNM, CNTNAP5, and CTNNA3) most likely to be involved in growth traits. This study provides new insights into the regulatory mechanisms of bovine body size development, which can be very useful in the development of management and breeding strategies.

20.
Int J Biol Macromol ; 253(Pt 2): 126740, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37689299

RESUMEN

Adipogenesis is a complex biological process. However, the regulatory mechanism of circRNAs in adipogenesis is still unclear. In this study, we identified a novel circRNA, circBTBD7, which was highly expressed in adipose tissue and peaked at two days after differentiation in bovine primary adipocytes. When circBTBD7 was knocked down in bovine primary adipocytes, the lipid droplets accumulation was significantly increased. Furthermore, the expression of adipocyte differentiation markers (PPARγ and C/EBPα) and lipogenic genes (FABP4, FASN and ACCα) were significantly upregulated. Moreover, circBTBD7 was mainly located in the cytoplasm, which indicated it was probably to act as competitive endogenous RNAs (ceRNAs). Subsequently, the dual luciferase reporter assay showed that circBTBD7 could bind to miR-183. Further, miR-183 promoted adipogenesis by inhibiting SMAD4. What's more, the rescue assays showed that circBTBD7 attenuated the inhibition of SMAD4 expression by sponging miR-183. In summary, these results suggested that circBTBD7 inhibited adipogenesis via the miR-183/SMAD4 axis.


Asunto(s)
Adipogénesis , MicroARNs , Animales , Bovinos , Adipogénesis/genética , MicroARNs/genética , MicroARNs/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...