Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-38559190

RESUMEN

Despite years of intense investigation, the mechanisms underlying neuronal death in Alzheimer's disease, the most common neurodegenerative disorder, remain incompletely understood. To define relevant pathways, we integrated the results of an unbiased, genome-scale forward genetic screen for age-associated neurodegeneration in Drosophila with human and Drosophila Alzheimer's disease-associated multi-omics. We measured proteomics, phosphoproteomics, and metabolomics in Drosophila models of Alzheimer's disease and identified Alzheimer's disease human genetic variants that modify expression in disease-vulnerable neurons. We used a network optimization approach to integrate these data with previously published Alzheimer's disease multi-omic data. We computationally predicted and experimentally demonstrated how HNRNPA2B1 and MEPCE enhance tau-mediated neurotoxicity. Furthermore, we demonstrated that the screen hits CSNK2A1 and NOTCH1 regulate DNA damage in Drosophila and human iPSC-derived neural progenitor cells. Our work identifies candidate pathways that could be targeted to ameliorate neurodegeneration in Alzheimer's disease.

2.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496508

RESUMEN

Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ɑS) and beta-amyloid (Aß) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ɑS/Aß modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes GBA1 and LRRK2, rare variants AD genes (CD33, CR1 and PSEN2) and Aß toxicity modifiers involved in RhoA/actin cytoskeleton regulation (ARGHEF1, ARHGEF28, MICAL3, PASK, PKN2, PSEN2) were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ɑS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of PSEN2 in both human cortical and dopaminergic neurons, and PSEN2 mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. PSEN2 contributes to a common-risk signal in PD GWAS and regulates ɑS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.

3.
Sci Rep ; 13(1): 19290, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935827

RESUMEN

Chemotherapy-related cognitive impairment (CRCI) is a common adverse effect of treatment and is characterized by deficits involving multiple cognitive domains including memory. Despite the significant morbidity of CRCI and the expected increase in cancer survivors over the coming decades, the pathophysiology of CRCI remains incompletely understood, highlighting the need for new model systems to study CRCI. Given the powerful array of genetic approaches and facile high throughput screening ability in Drosophila, our goal was to validate a Drosophila model relevant to CRCI. We administered the chemotherapeutic agents cisplatin, cyclophosphamide, and doxorubicin to adult Drosophila. Neurologic deficits were observed with all tested chemotherapies, with doxorubicin and in particular cisplatin also resulting in memory deficits. We then performed histologic and immunohistochemical analysis of cisplatin-treated Drosophila tissue, demonstrating neuropathologic evidence of increased neurodegeneration, DNA damage, and oxidative stress. Thus, our Drosophila model relevant to CRCI recapitulates clinical, radiologic, and histologic alterations reported in chemotherapy patients. Our new Drosophila model can be used for mechanistic dissection of pathways contributing to CRCI (and chemotherapy-induced neurotoxicity more generally) and pharmacologic screens to identify disease-modifying therapies.


Asunto(s)
Antineoplásicos , Deterioro Cognitivo Relacionado con la Quimioterapia , Disfunción Cognitiva , Adulto , Animales , Humanos , Cisplatino/efectos adversos , Antineoplásicos/efectos adversos , Disfunción Cognitiva/diagnóstico , Drosophila , Doxorrubicina/efectos adversos
4.
J Neurochem ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491912

RESUMEN

The nucleoside guanosine is an endogenous neuromodulator associated with neuroprotection. The roles of guanosine during aging are still not fully elucidated. Guanosine modulates SUMOylation in neurons and astrocytes in vitro, but it is not known whether guanosine can modulate SUMOylation in vivo and improve cognitive functions during aging. SUMOylation is a post-translational protein modification with potential neuroprotective roles. In this follow-up study, we investigated whether guanosine could modulate SUMOylation in vivo and behavior in young and aged mice. Young (3-month-old) and aged (24-month-old) C57BL/6 mice were treated with guanosine (8 mg/kg intraperitoneal) daily for 14 days. Starting on day 8 of treatment, the following behavioral tests were performed: open field, novel object location, Y-maze, sucrose splash test, and tail suspension test. Treatment with guanosine did not change the locomotor activity of young or aged mice in the open-field test. Treatment with guanosine improved short-term memory only for young mice but did not change the working memory of either young or aged mice, as evaluated using object recognition and the Y-maze tests, respectively. Depressive-like behaviors, such as impaired grooming evaluated through the splash test, did not change in either young or aged mice. However, young mice treated with guanosine increased their immobility time in the tail suspension test, suggesting an effect on behavioral coping strategies. Global SUMO1-ylation was significantly increased in the hippocampus of young and aged mice after 14 days of treatment with guanosine, whereas no changes were detected in the cerebral cortex of either young or aged mice. Our findings demonstrate that guanosine also targets hippocampal SUMOylation in vivo, thereby contributing to a deeper understanding of its mechanisms of action. This highlights the involvement of SUMOylation in guanosine's modulatory and neuroprotective effects.

5.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333281

RESUMEN

Chemotherapy-related cognitive impairment (CRCI) is a common adverse effect of treatment and is characterized by deficits involving multiple cognitive domains including memory. Despite the significant morbidity of CRCI and the expected increase in cancer survivors over the coming decades, the pathophysiology of CRCI remains incompletely understood, highlighting the need for new model systems to study CRCI. Given the powerful array of genetic approaches and facile high throughput screening ability in Drosophila, our goal was to validate a Drosophila model of CRCI. We administered the chemotherapeutic agents cisplatin, cyclophosphamide, and doxorubicin to adult Drosophila. Neurocognitive deficits were observed with all tested chemotherapies, especially cisplatin. We then performed histologic and immunohistochemical analysis of cisplatin-treated Drosophila tissue, demonstrating neuropathologic evidence of increased neurodegeneration, DNA damage, and oxidative stress. Thus, our Drosophila model of CRCI recapitulates clinical, radiologic, and histologic alterations reported in chemotherapy patients. Our new Drosophila model can be used for mechanistic dissection of pathways contributing to CRCI and pharmacologic screens to identify novel therapies to ameliorate CRCI.

6.
IBRO Neurosci Rep ; 12: 142-148, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35746977

RESUMEN

Defining the molecular changes that underlie Alzheimer's disease (AD) is an important question in neuroscience. Here, we examined changes in protein SUMOylation, and proteins involved in mitochondrial dynamics, in an in vitro model of AD induced by application of amyloid-ß 1-42 (Aß1-42) to cultured neurons. We observed Aß1-42-induced decreases in global SUMOylation and in levels of the SUMO pathway enzymes SENP3, PIAS1/2, and SAE2. Aß exposure also decreased levels of the mitochondrial fission proteins Drp1 and Mff and increased activation of caspase-3. To examine whether loss of SENP3 is cytoprotective we knocked down SENP3, which partially prevented the Aß1-42-induced increase in caspase-3 activation. Together, these data support the hypothesis that altered SUMOylation may play a role in the mechanisms underlying AD.

7.
Purinergic Signal ; 16(3): 439-450, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32892251

RESUMEN

SUMOylation is a post-translational modification (PTM) whereby members of the Small Ubiquitin-like MOdifier (SUMO) family of proteins are conjugated to lysine residues in target proteins. SUMOylation has been implicated in a wide range of physiological and pathological processes, and much attention has been given to its role in neurodegenerative conditions. Due to its reported role in neuroprotection, pharmacological modulation of SUMOylation represents an attractive potential therapeutic strategy in a number of different brain disorders. However, very few compounds that target the SUMOylation pathway have been identified. Guanosine is an endogenous nucleoside with important neuromodulatory and neuroprotective effects. Experimental evidence has shown that guanosine can modulate different intracellular pathways, including PTMs. In the present study we examined whether guanosine alters global protein SUMOylation. Primary cortical neurons and astrocytes were treated with guanosine at 1, 10, 100, 300, or 500 µM at four time points, 1, 6, 24, or 48 h. We show that guanosine increases global SUMO2/3-ylation in neurons and astrocytes at 1 h at concentrations above 10 µM. The molecular mechanisms involved in this effect were evaluated in neurons. The guanosine-induced increase in global SUMO2/3-ylation was still observed in the presence of dipyridamole, which prevents guanosine internalization, demonstrating an extracellular guanosine-induced effect. Furthermore, the A1 adenosine receptor antagonist DPCPX abolished the guanosine-induced increase in SUMO2/3-ylation. The A2A adenosine receptor antagonist ZM241385 increased SUMOylation per se, but did not alter guanosine-induced SUMOylation, suggesting that guanosine may modulate SUMO2/3-ylation through an A1-A2A receptor interaction. Taken together, this is the first report to show guanosine as a SUMO2/3-ylation enhancer in astrocytes and neurons.


Asunto(s)
Astrocitos/efectos de los fármacos , Guanosina/farmacología , Neuronas/efectos de los fármacos , Receptores Purinérgicos P1/metabolismo , Sumoilación/efectos de los fármacos , Animales , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Ratas , Ratas Wistar , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
8.
Adv Exp Med Biol ; 963: 261-281, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197918

RESUMEN

The covalent posttranslational modifications of proteins are critical events in signaling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. This is especially important in the CNS where the processes affecting synaptic communication between neurons are highly complex and very tightly regulated. Sumoylation regulates the function and fate of a diverse array of proteins and participates in the complex cell signaling pathways required for cell survival. One of the most complex signaling pathways is synaptic transmission.Correct synaptic function is critical to the working of the brain and its alteration through synaptic plasticity mediates learning, mental disorders and stroke. The investigation of neuronal sumoylation is a new and exciting field and the functional and pathophysiological implications are far-reaching. Sumoylation has already been implicated in a diverse array of neurological disorders. Here we provide an overview of current literature highlighting recent insights into the role of sumoylation in neurodegeneration. In addition we present a brief assessment of drug discovery in the analogous ubiquitin system and extrapolate on the potential for development of novel therapies that might target SUMO-associated mechanisms of neurodegenerative disease.


Asunto(s)
Degeneración Nerviosa , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica
9.
Appl Biochem Biotechnol ; 162(8): 2221-31, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20526823

RESUMEN

Verbenol is a bicyclicbicycle secondary allylic alcohol, with pronounced camphor and mint flavor notes, mainly used as food flavoring. This compound is also used to control harmful insects, and hence has potential for using in agriculture, and is an intermediate in the synthesis of valuable perfume and medicinal substances. This work is focused on the microbial oxidation of (-)-α-pinene to verbenol production. To carry out the present study, 405 microorganisms were tested for their ability to bioconvert the substrate. From the isolated microorganisms, 193 were selected in the pre-screening using mineral medium for limonene degradation. At the screening step, 31 strains were able to convert (-)-α-pinene in verbenol. The highest concentration in verbenol from (-)-α-pinene was about 125.6 mg/L for yeast isolated from orange juice industrial residue.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Hongos/aislamiento & purificación , Hongos/metabolismo , Monoterpenos/metabolismo , Bebidas/microbiología , Monoterpenos Bicíclicos , Biotransformación , Citrus/microbiología , Industria de Alimentos , Cinética , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...