Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 173: 113637, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36708864

RESUMEN

Cigarette smoking promotes osteoclast activity, thus increasing the risk of secondary osteoporosis, leading to osteoporosis-associated fracture and impaired fracture healing. Heated tobacco products (HTP) are considered potential reduced-risk alternatives to cigarettes. However, their impact on bone metabolism remains to be elucidated. We developed an in vitro model that mimics in vivo bone cell interactions to comparatively evaluate the effects of HTPs and cigarette smoke on bone cell functionality and viability. We generated an in vitro coculture system with SCP-1 and THP-1 cells (1:8 ratio) cultured on a decellularized Saos-2 matrix with an optimized coculture medium. We found that, following acute or chronic exposure, particulate matter extract from the aerosol of an HTP, the Tobacco Heating System (THS), was less harmful to the bone coculture system than reference cigarette (1R6F) smoke extract. In the fracture healing model, cultures exposed to the THS extract maintained similar osteoclast activity and calcium deposits as control cultures. Conversely, smoke extract exposure promoted osteoclast activity, resulting in an osteoporotic environment, whose formation could be prevented by bisphosphonate coadministration. Thus, THS is potentially less harmful than cigarette smoke to bone cell differentiation and bone mineralization - both being crucial aspects during the reparative phase of fracture healing.


Asunto(s)
Fumar Cigarrillos , Productos de Tabaco , Nicotiana , Calefacción , Productos de Tabaco/efectos adversos , Material Particulado , Aerosoles
2.
Bioengineering (Basel) ; 9(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36290484

RESUMEN

There is a lack of physiologically relevant in vitro human kidney models for disease modelling and detecting drug-induced effects given the limited choice of cells and difficulty implementing quasi-physiological culture conditions. We investigated the influence of fluid shear stress on primary human renal proximal tubule epithelial cells (RPTECs) cultured in the micro-physiological Vitrofluid device. This system houses cells seeded on semipermeable membranes and can be connected to a regulable pump that enables controlled, unidirectional flow. After 7 days in culture, RPTECs maintained physiological characteristics such as barrier integrity, protein uptake ability, and expression of specific transporters (e.g., aquaporin-1). Exposure to constant apical side flow did not cause cytotoxicity, cell detachment, or intracellular reactive oxygen species accumulation. However, unidirectional flow profoundly affected cell morphology and led to primary cilia lengthening and alignment in the flow direction. The dynamic conditions also reduced cell proliferation, altered plasma membrane leakiness, increased cytokine secretion, and repressed histone deacetylase 6 and kidney injury molecule 1 expression. Cells under flow also remained susceptible to colistin-induced toxicity. Collectively, the results suggest that dynamic culture conditions in the Vitrofluid system promote a more differentiated phenotype in primary human RPTECs and represent an improved in vitro kidney model.

3.
Toxicol Rep ; 9: 316-322, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284240

RESUMEN

Background: Halitosis is the general term used to describe any disagreeable odor in exhaled air, regardless of whether the odorous substances originate from oral or non-oral sources. Previous research has strongly associated tobacco smoking in the development of halitosis, as it increases the synthesis of toxic volatile sulfur compounds in diseased periodontal pockets. In this review, we summarize the etiopathology and epidemiology of halitosis as well as the current evidence on the impact of smoking by means of a meta-analysis. Methods: PubMed and Embase were searched to identify publications that reported halitosis in smokers and nonsmokers. Meta-analyses were performed if a sufficient number (n ≥ 3) of articles were available that evaluated the same outcome. Results: The meta-analyses showed that there was an increased risk of halitosis in current smokers versus nonsmokers (odds ratios). These results were consistent both in fixed and random effects models. Even though the interstudy heterogeneity was high (I2 = 91%), sensitivity analysis by limiting the number of studies yielded similar results, with no-to-moderate heterogeneity (I2 = 0-65%). The analysis comparing ever smokers with never smokers showed no significant difference in the risk of halitosis in ever smokers. The same effect was observed when upon stratifying the analyses on the basis of ascertainment of halitosis (self-reported or measured by a Halimeter). Conclusions: Halitosis is a common condition which can affect the quality of life of those affected. The results from this literature review and meta-analysis show that current smokers are more likely to suffer from halitosis, even if they are less likely to report it.

4.
J Mater Sci Mater Med ; 32(9): 124, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524552

RESUMEN

The extracellular matrix regulates cell survival, proliferation, and differentiation. In vitro two-dimensional cell experiments are typically performed on a plastic plate or a substrate of a single extracellular matrix constituent such as collagen or calcium phosphate. As these approaches do not include extracellular matrix proteins or growth factors, they fail to mimic a complex cell microenvironment. The cell-derived matrix is an alternative platform for better representing the in vivo microenvironment in vitro. Standard decellularization of a cell-derived matrix is achieved by combining chemical and physical methods. In this study, we compared the decellularization efficacy of several methods: ammonium hydroxide, sodium dodecyl sulfate (SDS), or Triton X-100 with cold or heat treatment on a matrix of Saos-2 cells. We found that the protocols containing SDS were cytotoxic during recellularization. Heat treatment at 47 °C was not cytotoxic, removed cellular constituents, inactivated alkaline phosphatase activity, and maintained the levels of calcium deposition. Subsequently, we investigated the differentiation efficiency of a direct bone coculture system in the established decellularized Saos-2 matrix, an inorganic matrix of calcium phosphate, and a plastic plate as a control. We found that the decellularized Saos-2 cell matrix obtained by heat treatment at 47 °C enhanced osteoclast differentiation and matrix mineralization better than the inorganic matrix and the control. This simple and low-cost method allows us to create a Saos-2 decellularized matrix that can be used as an in vivo-like support for the growth and differentiation of bone cells.


Asunto(s)
Matriz Extracelular Descelularizada/síntesis química , Osteoblastos/citología , Osteoblastos/fisiología , Ingeniería de Tejidos/métodos , Huesos/citología , Huesos/efectos de los fármacos , Huesos/fisiología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Humanos , Osteoblastos/efectos de los fármacos , Osteocitos/citología , Osteocitos/efectos de los fármacos , Osteocitos/fisiología , Células THP-1 , Andamios del Tejido/química
5.
Am J Dent ; 34(2): 63-69, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33940661

RESUMEN

PURPOSE: To compare the effects of whitening toothpaste and bleaching with 6% hydrogen peroxide (H2O2) on discoloration of dental resin composite caused by cigarette smoke (CS) and electronic vapor product (EVP) aerosol. METHODS: 40 resin composite discs were divided into three groups: 15 each for CS and EVP aerosol exposure and 10 for air exposure (control). Exposures were performed for 15 days, with daily brushing with regular toothpaste. Two whitening sessions, including 21 days of brushing with whitening toothpaste and 3 days of treatments with take-home bleaching (6% H2O2), were performed after the exposure. Color and gloss were assessed before exposure, at every 5 days of exposure, and after each whitening session. RESULTS: After 15 days of exposure, marked discoloration of resin composite was observed in the CS group (ΔE = 23.66 ± 2.31), minimal color change in the EVP group ((ΔE = 2.77 ± 0.75), and no color change in the control group. Resin composites exposed to CS did not recover their original color after treatment with whitening toothpaste ((ΔE = 20.17 ± 2.68) or take-home bleaching ((ΔE = 19.32 ± 2.53), but those exposed to EVP aerosol reverted to baseline after treatment with whitening toothpaste ((ΔE = 0.98 ± 0.37), and no further change in color was observed following take-home bleaching. The gloss of resin composites exposed to CS, EVP aerosol, and air decreased equally with exposure time. Brushing with whitening toothpaste recovered the gloss similarly in all groups, but no further change was observed following take-home bleaching. CLINICAL SIGNIFICANCE: Aerosol from electronic vapor products induced minimal discoloration of resin composites that can be completely reverted by brushing with whitening toothpaste alone. Bleaching with 6% H2O2 did not revert discoloration caused by cigarette smoke. Whitening toothpaste could help revert the decreased gloss of resin composites.


Asunto(s)
Peróxido de Hidrógeno , Pastas de Dientes , Aerosoles , Electrónica , Peróxido de Hidrógeno/efectos adversos , Fumar
6.
JMIR Res Protoc ; 10(1): e15350, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33459599

RESUMEN

BACKGROUND: Smoking is a significant risk factor for periodontal disease and tooth loss, as shown in several clinical studies comparing smokers and nonsmokers. Although only a few longitudinal studies have assessed the outcome of periodontal disease after smoking cessation, they indicated that recovery after nonsurgical treatment was more successful in those who had quit smoking. As part of tobacco harm reduction strategies, substituting cigarettes with alternative, less harmful tobacco products is an approach complementary to cessation for smokers who would otherwise continue to smoke. The Tobacco Heating System (THS), developed by Philip Morris International (commercialized as IQOS), is part of the heat-not-burn product category. The IQOS device electrically heats tobacco instead of burning it, at much lower temperatures than cigarettes, thereby producing substantially lower levels of harmful and potentially harmful constituents, while providing the nicotine, taste, ritual, and a sensory experience that closely parallel those of cigarettes. Phillip Morris International has published the results from a broad clinical assessment program, which was established to scientifically substantiate the harm reduction potential of the THS among adult healthy smokers switching to the THS. The program is now progressing toward including adult smokers with smoking-related diseases. OBJECTIVE: The goal of this study is to demonstrate favorable changes of periodontal endpoints in response to mechanical periodontal therapy in patients with generalized chronic periodontitis who completely switched to THS use compared with continued cigarette smoking. METHODS: This is a randomized controlled two-arm parallel-group multicenter Japanese study conducted in patients with chronic generalized periodontitis who switch from cigarettes to THS compared with smokers continuing to smoke cigarettes for 6 months. The patients were treated with mechanical periodontal therapy as per standard of care in Japan. The primary objective of the study is to demonstrate the beneficial effect of switching to THS use compared with continued cigarette smoking on pocket depth (PD) reduction in all sites with an initial PD≥4 mm. The secondary objectives include evaluation of other periodontal parameters (eg, clinical attachment level or gingival inflammation) and overall oral health status upon switching to THS. Safety was monitored throughout the study. RESULTS: In total, 172 subjects were randomized to the cigarette (n=86) or THS (n=86) groups, and all 172 completed the study. The conduct phase of the study is completed, while data cleaning and analyses are ongoing. CONCLUSIONS: This study is the first to test a heat-not-burn tobacco product in smokers with an already established disease. The results should further strengthen the evidence that switching to THS can significantly reduce the risk of smoking-related diseases if favorable changes in the evolution of chronic generalized periodontitis after mechanical therapy are found when compared with continued cigarette smoking. TRIAL REGISTRATION: ClinicalTrials.gov NCT03364751; https://clinicaltrials.gov/ct2/show/NCT03364751. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/15350.

7.
Front Oral Health ; 2: 777442, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35048075

RESUMEN

Halitosis is a health condition which counts cigarette smoking (CS) among its major risk factors. Cigarette smoke can cause an imbalance in the oral bacterial community, leading to several oral diseases and conditions, including intraoral halitosis. Although the best approach to decrease smoking-related health risks is quitting smoking, this is not feasible for many smokers. Switching to potentially reduced-risk products, like electronic vapor products (EVP) or heated tobacco products (HTP), may help improve the conditions associated with CS. To date, there have been few systematic studies on the effects of CS on halitosis and none have assessed the effects of EVP and HTP use. Self-assessment studies have shown large limitations owing to the lack of reliability in the participants' judgment. This has compelled the scientific community to develop a strategy for meaningful assessment of these new products in comparison with cigarettes. Here, we compiled a review of the existing literature on CS and halitosis and propose a 3-layer approach that combines the use of the most advanced breath analysis techniques and multi-omics analysis to define the interactions between oral bacterial species and their role in halitosis both in vitro and in vivo. Such an approach will allow us to compare the effects of different nicotine-delivery products on oral bacteria and quantify their impact on halitosis. Defining the impact of alternative nicotine-delivery products on intraoral halitosis and its associated bacteria will help the scientific community advance a step further toward understanding the safety of these products and their potentiall risks for consumers.

8.
Toxicol Rep ; 7: 1282-1295, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014713

RESUMEN

The expression of some microRNAs (miRNA) is modulated in response to cigarette smoke (CS), which is a leading cause of major preventable diseases. However, whether miRNA expression is also modulated by the aerosol/extract from potentially reduced-risk products is not well studied. The present work is a meta-analysis of 12 in vitro studies in human organotypic epithelial cultures of the aerodigestive tract (buccal, gingival, bronchial, nasal, and small airway epithelia). These studies compared the effects of exposure to aerosols from electronic vapor (e-vapor) products and heated tobacco products, and to extracts from Swedish snus products (in the present work, will be referred to as reduced-risk products [RRPs]) on miRNA expression with the effects of exposure to CS or its total particulate matter fraction. This meta-analysis evaluated 12 datasets of a total of 736 detected miRNAs and 2775 exposed culture inserts. The t-distributed stochastic neighbor embedding method was used to find similarities across the diversity of miRNA responses characterized by tissue type, exposure type, and product concentration. The CS-induced changes in miRNA expression in gingival cultures were close to those in buccal cultures; similarly, the alterations in miRNA expression in small airway, bronchial, and nasal tissues resembled each other. A supervised clustering was performed to identify miRNAs exhibiting particular response patterns. The analysis identified a set of miRNAs whose expression was altered in specific tissues upon exposure to CS (e.g., miR-125b-5p, miR-132-3p, miR-99a-5p, and 146a-5p). Finally, we investigated the impact of RRPs on miRNA expression in relation to that of CS by calculating the response ratio r between the RRP- and CS-induced alterations at an individual miRNA level, showing reduced alterations in miRNA expression following RRP exposure relative to CS exposure (94 % relative reduction). No specific miRNA response pattern indicating exposure to aerosols from heated tobacco products and e-vapor products, or extracts from Swedish snus was identifiable.

9.
Artículo en Inglés | MEDLINE | ID: mdl-32585495

RESUMEN

Tobacco smoking contributes to tooth discoloration. Pigmented compounds in the smoke generated by combustion of tobacco can cause discoloration of dental hard tissues. However, aerosols from heated tobacco products cause less discoloration than cigarette smoke (CS) in vitro. The objective of the present study was to optimize a method for extracting the colored chemical compounds deposited on tooth enamel following exposure to total particulate matter (TPM) from CS or a heated tobacco product (Tobacco Heating System [THS] 2.2), analyze the extracts by gas chromatography coupled to time-of-flight mass spectrometry, and identify the key chemicals associated with tooth discoloration. Sixty bovine enamel blocks were exposed for 2 weeks to TPM from CS or THS 2.2 aerosol or to artificial saliva as a control. Brushing without toothpaste and color measurements were performed each week. Noticeable discoloration of enamel was observed following exposure to CS TPM. The discoloration following exposure to THS 2.2 aerosol TPM or artificial saliva was not distinguishable to the eye (ΔE < 3.3). Carbon disulfide was used to extract surface-deposited chemicals. Untargeted analyses were followed by partial least squares correlation against discoloration scores (R2 = 0.96). Eleven compounds had variable importance in projection scores greater than 2. Discriminant autocorrelation matrix calculation of their mass spectral information identified eight of the eleven compounds as terpenoids. None of the compounds were related to nicotine. Several of these compounds were also detected in THS 2.2 aerosol TPM-exposed enamel, but at lower levels, in line with our findings showing less discoloration. Compared with CS TPM exposure, THS 2.2 aerosol TPM exposure resulted in lower deposition of color-related compounds on enamel surface, consistent with minimal discoloration of dental enamel.


Asunto(s)
Esmalte Dental/efectos de los fármacos , Nicotiana/química , Material Particulado/análisis , Humo/análisis , Decoloración de Dientes , Aerosoles/química , Animales , Bovinos , Esmalte Dental/patología , Cromatografía de Gases y Espectrometría de Masas/métodos , Calor , Humo/efectos adversos , Fumar
10.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L606-L618, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31967849

RESUMEN

Harmful consequences of cigarette smoke (CS) exposure during lung development can already manifest in infancy. In particular, early life exposure to nicotine, the main component of CS, was shown to affect lung development in animal models. We aimed to characterize the effect of nicotine on alveoli formation. We analyzed the kinetics of normal alveolar development during the alveolarization phase and then looked at the effect of nicotine in a mouse model of gestational and early life exposure. Immunohistochemical staining revealed that the wave of cell proliferation [i.e., vascular endothelial cells, alveolar epithelial cells (AEC) type II and mesenchymal cell] occurs at postnatal day (pnd) 8 in control and nicotine-exposed lungs. However, FACS analysis of individual epithelial alveolar cells revealed nicotine-induced transient increase of AEC type I proliferation and decrease of vascular endothelial cell proliferation at pnd8. Furthermore, nicotine increased the percentage of endothelial cells at pnd2. Transcriptomic data also showed significant changes in nicotine samples compared with the controls on cell cycle-associated genes at pnd2 but not anymore at pnd16. Accordingly, the expression of survivin, involved in cell cycle regulation, also follows a different kinetics in nicotine lung extracts. These changes resulted in an increased lung size detected by stereology at pnd16 but no longer in adult age, suggesting that nicotine can act on the pace of lung maturation. Taken together, our results indicate that early life nicotine exposure could be harmful to alveolar development independently from other toxicants contained in CS.


Asunto(s)
Lactancia/efectos de los fármacos , Pulmón/efectos de los fármacos , Exposición Materna/efectos adversos , Nicotina/efectos adversos , Embarazo/efectos de los fármacos , Alveolos Pulmonares/efectos de los fármacos , Animales , Animales Recién Nacidos , Ciclo Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Arch Toxicol ; 93(11): 3229-3247, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31494692

RESUMEN

We previously proposed a systems toxicology framework for in vitro assessment of e-liquids. The framework starts with the first layer aimed at screening the potential toxicity of e-liquids, followed by the second layer aimed at investigating the toxicity-related mechanism of e-liquids, and finally, the third layer aimed at evaluating the toxicity-related mechanism of the corresponding aerosols. In this work, we applied this framework to assess the impact of the e-liquid MESH Classic Tobacco and its aerosol compared with that of cigarette smoke (CS) from the 3R4F reference cigarette. In the first layer, we evaluated the cytotoxicity profile of the MESH Classic Tobacco e-liquid (containing humectants, nicotine, and flavors) and its Base e-liquid (containing humectant and nicotine only) in comparison with total particulate matter (TPM) of 3R4F CS using primary bronchial epithelial cell cultures. In the second layer, the same culture model was used to explore changes in specific markers using high-content screening assays to identify potential toxicity-related mechanisms induced by the MESH Classic Tobacco and Base e-liquids beyond cell viability in comparison with the 3R4F CS TPM-induced effects. Finally, in the third layer, we compared the impact of exposure to the MESH Classic Tobacco or Base aerosols with 3R4F CS using human organotypic air-liquid interface buccal and small airway epithelial cultures. The results showed that the cytotoxicity of the MESH Classic Tobacco liquid was similar to the Base liquid but lower than 3R4F CS TPM at comparable nicotine concentrations. Relative to 3R4F CS exposure, MESH Classic Tobacco aerosol exposure did not cause tissue damage and elicited lower changes in the mRNA, microRNA, and protein markers. In the context of tobacco harm reduction strategy, the framework is suitable to assess the potential-reduced impact of electronic cigarette aerosol relative to CS.


Asunto(s)
Aerosoles/toxicidad , Bronquios/efectos de los fármacos , Sistemas Electrónicos de Liberación de Nicotina , Células Epiteliales/efectos de los fármacos , Productos de Tabaco/toxicidad , Adenilato Quinasa/metabolismo , Bronquios/metabolismo , Bronquios/patología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , Proteoma/metabolismo , Pruebas de Toxicidad , Transcriptoma/efectos de los fármacos
12.
J Dent ; 89: 103182, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31430508

RESUMEN

OBJECTIVES: To compare the relative effects of cigarette smoke (CS), electronic cigarette (EC), red wine, coffee, and soy sauce on the color of enamel, dentin, and composite resin restorations, as well as the effects of whitening treatments. METHODS: Seventy premolars with composite restorations were exposed to CS, EC aerosol (a novel EC device with MESH™ technology [P4M3 version 1.0, Philip Morris International]), red wine, coffee, and soy sauce for 56 min/day for 15 days. Two whitening sessions with 6% and 35% hydrogen peroxide (H2O2) were performed on the exposed samples. Teeth exposed to CS and EC aerosol were also brushed with whitening toothpaste for 3 weeks. Color match of resin restorations was assessed, and color changes were compared after exposure and after whitening treatments. RESULTS: Discolorations in enamel, dentin, and composite resin were observed in the order of red wine > CS > soy sauce > coffee > EC. Color mismatch between enamel and resin restorations occurred only in red wine and CS groups. Brushing with whitening toothpaste removed discoloration caused by EC aerosol; H2O2 treatments were necessary to eliminate discolorations caused by coffee and soy sauce. Discolorations of dentin and resin restorations could not be completely removed by whitening treatments, and color mismatch remained in teeth exposed to red wine and CS. CONCLUSION: Red wine and CS cause significant tooth discoloration and color mismatch in enamel and resin restorations that are not reversible by whitening treatments. Tooth discoloration associated with EC aerosol was minimal and could be removed by brushing with whitening toothpaste. CLINICAL SIGNIFICANCE: Red wine drinkers and cigarette smokers have increased risks for tooth discoloration and color mismatch between enamel and composite resin restorations. Whitening treatments may not be effective in correcting the color mismatch. Tooth discoloration associated with EC aerosol is minimal.


Asunto(s)
Resinas Compuestas/farmacología , Peróxido de Hidrógeno/farmacología , Decoloración de Dientes/tratamiento farmacológico , Diente/efectos de los fármacos , Color , Resinas Compuestas/química , Dureza , Humanos , Blanqueadores Dentales/farmacología , Decoloración de Dientes/patología
13.
Intern Emerg Med ; 14(6): 863-883, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30835057

RESUMEN

In the context of tobacco harm-reduction strategy, the potential reduced impact of electronic cigarette (EC) exposure should be evaluated relative to the impact of cigarette smoke exposure. We conducted a series of in vitro studies to compare the biological impact of an acute exposure to aerosols of "test mix" (flavors, nicotine, and humectants), "base" (nicotine and humectants), and "carrier" (humectants) formulations using MarkTen® EC devices with the impact of exposure to smoke of 3R4F reference cigarettes, at a matching puff number, using human organotypic air-liquid interface buccal and small airway cultures. We measured the concentrations of nicotine and carbonyls deposited in the exposure chamber after each exposure experiment. The deposited carbonyl concentrations were used as representative measures to assess the reduced exposure to potentially toxic volatile substances. We followed a systems toxicology approach whereby functional biological endpoints, such as histopathology and ciliary beating frequency, were complemented by multiplex and omics assays to measure secreted inflammatory proteins and whole-genome transcriptomes, respectively. Among the endpoints analyzed, the only parameters that showed a significant response to EC exposure were secretion of proteins and whole-genome transcriptomes. Based on the multiplex and omics analyzes, the cellular responses to EC aerosol exposure were tissue type-specific; however, those alterations were much smaller than those following cigarette smoke exposure, even when the EC aerosol exposure under the testing conditions resulted in a deposited nicotine concentration approximately 200 times that in saliva of EC users.


Asunto(s)
Fumar Cigarrillos/metabolismo , Cigarrillo Electrónico a Vapor/metabolismo , Exposición a Riesgos Ambientales/análisis , Cigarrillo Electrónico a Vapor/análisis , Cigarrillo Electrónico a Vapor/toxicidad , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/fisiopatología
14.
Food Chem Toxicol ; 125: 252-270, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30610935

RESUMEN

Swedish snus is a smokeless tobacco product that contains reduced levels of harmful compounds compared with cigarette smoke. In Sweden, where snus use exceeds smoking among men, relatively low rates of major smoking-related diseases have been recorded. To better understand how snus use could align with current tobacco harm reduction strategies, its potential mechanisms of toxicity must be investigated. This study aimed to determine, via a systems toxicology approach, the biological impact of repeated 72-hour exposure of human gingival epithelial organotypic cultures to extracts from both a commercial and a reference snus and the total particulate matter (TPM) from cigarette smoke. At concentrations relevant for human use, cultures treated with snus extracts induced mild, generally reversible biological changes, while TPM treatment induced substantial morphological and inflammatory alterations. Network enrichment analysis and integrative analysis of the global mRNA and miRNA expression profiles indicated a limited and mostly transient impact of the snus extracts, in particular on xenobiotic metabolism, while the effects of TPM were marked and sustained over time. High-confidence miRNAs that might be related to pathological conditions in vivo were identified. This study highlights the limited biological impact of Swedish snus extract on human organotypic gingival cultures.


Asunto(s)
Encía/efectos de los fármacos , Material Particulado/análisis , Extractos Vegetales/efectos adversos , Tabaco sin Humo/efectos adversos , Células Cultivadas , Encía/patología , Humanos , Inflamación/genética , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Nicotina/análisis , Extractos Vegetales/análisis , Extractos Vegetales/química , Suecia , Factores de Tiempo , Tabaco sin Humo/análisis , Transcriptoma/efectos de los fármacos
15.
Quintessence Int ; 50(2): 156-166, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30564805

RESUMEN

OBJECTIVES: To test if cigarette smoke (CS) causes discoloration of enamel, dentin, and composite resin restorations and induces color mismatch between dental hard tissues and the restorations, and to compare the findings with the effects of aerosol generated by the tobacco heating system (THS) 2.2. METHOD AND MATERIALS: Twenty-two human premolars were prepared with Class V cavities restored with Filtek Supreme Ultra (3M Espe) composite resin. Teeth were divided into two groups and exposed to either CS from 20 reference cigarettes (3R4F) or aerosol from 20 THS 2.2 tobacco heat sticks 4 days a week for 3 weeks. CIE L*a*b* color was assessed before and after exposure and brushing at 1, 2, and 3 weeks. Color match, marginal discoloration, marginal integrity, and surface texture of the Class V restoration were assessed according to a modified US Public Health Service (USPHS) criterion. RESULTS: Marked discoloration of enamel and dentin was observed following 3 weeks of CS exposure (ΔE = 8.8 ± 2.6 and 21.3 ± 4.4, respectively), and color mismatch occurred between the composite resin restorations (ΔE = 25.6 ± 3.8) and dental hard tissues. Discoloration was minimal in the enamel, dentin, and composite resin restorations in the THS 2.2 group, and no color mismatch was observed after 3 weeks of THS 2.2 aerosol exposure. CONCLUSION: CS causes significant tooth discoloration and induces color mismatch between dental hard tissues and composite resin restorations. Reducing or eliminating the deposits derived from tobacco combustion could minimize the impact of tobacco products on tooth discoloration.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Resinas Compuestas/química , Esmalte Dental/efectos de los fármacos , Dentina/efectos de los fármacos , Decoloración de Dientes/inducido químicamente , Diente Premolar , Humanos , Técnicas In Vitro , Ensayo de Materiales , Humo , Propiedades de Superficie
16.
Food Chem Toxicol ; 115: 148-169, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29505817

RESUMEN

Cigarette smoke (CS) is affecting considerably the oral mucosa. Heating, instead of burning, tobacco reduces consistently the amount of toxic compounds and may exert a lower impact on oral health than combusted cigarettes. The carbon-heated tobacco product 1.2 (CHTP1.2) is a potential modified risk tobacco product (MRTP) based on heat-not-burn technology. Using a systems toxicology assessment framework, we compared the effects of exposure to CHTP1.2 aerosol with those of CS from a reference cigarette (3R4F). Human organotypic cultures derived from buccal and gingival epithelia were exposed acutely (28-min) or repeatedly (28 min/day for 3 days), respectively, to two matching concentrations of CHTP1.2 aerosol or 3R4F CS, and a non-diluted (100%) CHTP1.2 aerosol. The results showed an absence of cytotoxicity, reduction in pathophysiological alterations, toxicological marker proteins, and inflammatory mediators following exposure to CHTP1.2 aerosol compared with 3R4F CS. Changes in mRNA and miRNA expression were linked by an integrative analysis approach, suggesting a regulatory role of miRNAs in several smoke/disease-relevant biological processes induced by 3R4F CS. The identification of mechanisms by which potential MRTPs can reduce the impact of tobacco use on biological systems is of great importance in understanding the molecular basis of the smoking harm reduction paradigm.


Asunto(s)
Aerosoles/análisis , Células Epiteliales/efectos de los fármacos , Nicotiana/química , Humo/efectos adversos , Productos de Tabaco/efectos adversos , Células Epiteliales/metabolismo , Humanos , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humo/análisis , Fumar/efectos adversos , Nicotiana/efectos adversos , Productos de Tabaco/análisis
17.
Appl In Vitro Toxicol ; 4(2): 91-106, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32953944

RESUMEN

In vitro air-liquid interface (ALI) cell culture models can potentially be used to assess inhalation toxicology endpoints and are usually considered, in terms of relevancy, between classic (i.e., submerged) in vitro models and animal-based models. In some situations that need to be clearly defined, ALI methods may represent a complement or an alternative option to in vivo experimentations or classic in vitro methods. However, it is clear that many different approaches exist and that only very limited validation studies have been carried out to date. This means comparison of data from different methods is difficult and available methods are currently not suitable for use in regulatory assessments. This is despite inhalation toxicology being a priority area for many governmental organizations. In this setting, a 1-day workshop on ALI in vitro models for respiratory toxicology research was organized in Paris in March 2016 to assess the situation and to discuss what might be possible in terms of validation studies. The workshop was attended by major parties in Europe and brought together more than 60 representatives from various academic, commercial, and regulatory organizations. Following plenary, oral, and poster presentations, an expert panel was convened to lead a discussion on possible approaches to validation studies for ALI inhalation models. A series of recommendations were made and the outcomes of the workshop are reported.

18.
Am J Dent ; 30(6): 316-322, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29251454

RESUMEN

PURPOSE: To study the effects of cigarette smoke (CS) on the discoloration of dental resin composite compared with the aerosol from a heat-not-burn tobacco product, the Tobacco Heating System 2.2 (THS2.2). METHODS: A total of 60 discs were prepared from three commercial resin composites: Durafill VS (DVS), Filtek Supreme Ultra (FSU) and Tetric EvoCeram BulkFill (TEC). Twenty discs of each composite were divided into two groups and exposed to CS from 20 reference cigarettes (3R4F) or aerosol from 20 THS2.2 tobacco sticks per day for 3 weeks. Color, gloss and surface roughness of the composite discs were measured at baseline and after exposure and brushing with toothpaste at 1, 2 and 3 weeks. RESULTS: Color differences from the baseline (ΔE) were on average 27.1 (±3.6) in 3R4F and 3.9 (±1.5) in the THS2.2 group after 3 weeks of exposure (P< 0.0001). TEC (30.4±1.4 and FSU (28.0 ±2.5) exhibited more discoloration than DVS (23.0±1.2) in the 3R4F group (P< 0.0001). FSU (2.6 ±0.5) showed significantly less discoloration than TEC (5.3±1.5) in the THS2.2 group (P< 0.0001). Surface roughness of resin composites was not affected by either CS or THS2.2 aerosol, while surface gloss increased in the composite discs with more severe discoloration. CLINICAL SIGNIFICANCE: Cigarette smoke caused significant discoloration of dental composite resins. Reducing or eliminating the deposits derived from combustion of tobacco has the potential to minimize the impact of smoking on the color of composite resin restorations.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Resinas Compuestas , Decoloración de Dientes , Color , Ensayo de Materiales , Humo , Fumar , Propiedades de Superficie , Productos de Tabaco
19.
Food Chem Toxicol ; 101: 15-35, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28025120

RESUMEN

Smoking is one of the major lifestyle-related risk factors for periodontal diseases. Modified risk tobacco products (MRTP) offer a promising alternative in the harm reduction strategy for adult smokers unable to quit. Using a systems toxicology approach, we investigated and compared the exposure effects of a reference cigarette (3R4F) and a heat-not-burn technology-based candidate MRTP, the Tobacco Heating System (THS) 2.2. Human gingival epithelial organotypic cultures were repeatedly exposed (3 days) for 28 min at two matching concentrations of cigarette smoke (CS) or THS2.2 aerosol. Results showed only minor histopathological alterations and minimal cytotoxicity upon THS2.2 aerosol exposure compared to CS (1% for THS2.2 aerosol vs. 30% for CS, at the high concentration). Among the 14 proinflammatory mediators analyzed, only 5 exhibited significant alterations with THS2.2 exposure compared with 11 upon CS exposure. Transcriptomic and metabolomic analysis indicated a general reduction of the impact in THS2.2 aerosol-exposed samples with respect to CS (∼79% lower biological impact for the high THS2.2 aerosol concentration compared to CS, and 13 metabolites significantly perturbed for THS2.2 vs. 181 for CS). This study indicates that exposure to THS2.2 aerosol had a lower impact on the pathophysiology of human gingival organotypic cultures than CS.


Asunto(s)
Aerosoles/efectos adversos , Células Epiteliales/efectos de los fármacos , Encía/efectos de los fármacos , Nicotiana/efectos adversos , Humo/análisis , Productos de Tabaco/efectos adversos , Productos de Tabaco/análisis , Adulto , Células Cultivadas , Células Epiteliales/citología , Encía/citología , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Pruebas de Toxicidad/métodos
20.
Chem Res Toxicol ; 29(8): 1252-69, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27404394

RESUMEN

Cigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction. In this study, we compared effects of exposure to aerosol derived from a candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, with those of CS generated from the 3R4F reference cigarette. Human organotypic oral epithelial tissue cultures (EpiOral, MatTek Corporation) were exposed for 28 min to 3R4F CS or THS2.2 aerosol, both diluted with air to comparable nicotine concentrations (0.32 or 0.51 mg nicotine/L aerosol/CS for 3R4F and 0.31 or 0.46 mg/L for THS2.2). We also tested one higher concentration (1.09 mg/L) of THS2.2. A systems toxicology approach was employed combining cellular assays (i.e., cytotoxicity and cytochrome P450 activity assays), comprehensive molecular investigations of the buccal epithelial transcriptome (mRNA and miRNA) by means of computational network biology, measurements of secreted proinflammatory markers, and histopathological analysis. We observed that the impact of 3R4F CS was greater than THS2.2 aerosol in terms of cytotoxicity, morphological tissue alterations, and secretion of inflammatory mediators. Analysis of the transcriptomic changes in the exposed oral cultures revealed significant perturbations in various network models such as apoptosis, necroptosis, senescence, xenobiotic metabolism, oxidative stress, and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) signaling. The stress responses following THS2.2 aerosol exposure were markedly decreased, and the exposed cultures recovered more completely compared with those exposed to 3R4F CS.


Asunto(s)
Mucosa Bucal/efectos de los fármacos , Nicotiana , Toxicología , Exposición a Riesgos Ambientales , Humanos , MicroARNs/metabolismo , Mucosa Bucal/citología , Mucosa Bucal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA