Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0303171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768113

RESUMEN

Tumor microenvironment (TME) is a complex dynamic system with many tumor-interacting components including tumor-infiltrating leukocytes (TILs), cancer associated fibroblasts, blood vessels, and other stromal constituents. It intrinsically affects tumor development and pharmacology of oncology therapeutics, particularly immune-oncology (IO) treatments. Accurate measurement of TME is therefore of great importance for understanding the tumor immunity, identifying IO treatment mechanisms, developing predictive biomarkers, and ultimately, improving the treatment of cancer. Here, we introduce a mouse-IO NGS-based (NGSmIO) assay for accurately detecting and quantifying the mRNA expression of 1080 TME related genes in mouse tumor models. The NGSmIO panel was shown to be superior to the commonly used microarray approach by hosting 300 more relevant genes to better characterize various lineage of immune cells, exhibits improved mRNA and protein expression correlation to flow cytometry, shows stronger correlation with mRNA expression than RNAseq with 10x higher sequencing depth, and demonstrates higher sensitivity in measuring low-expressed genes. We describe two studies; firstly, detecting the pharmacodynamic change of interferon-γ expression levels upon anti-PD-1: anti-CD4 combination treatment in MC38 and Hepa 1-6 tumors; and secondly, benchmarking baseline TILs in 14 syngeneic tumors using transcript level expression of lineage specific genes, which demonstrate effective and robust applications of the NGSmIO panel.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Microambiente Tumoral , Animales , Ratones , Microambiente Tumoral/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Interferón gamma/genética , Interferón gamma/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , ARN Mensajero/genética , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Femenino , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Perfilación de la Expresión Génica/métodos
2.
Sci Rep ; 12(1): 3278, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228603

RESUMEN

Cancers are immunologically heterogeneous. A range of immunotherapies target abnormal tumor immunity via different mechanisms of actions (MOAs), particularly various tumor-infiltrate leukocytes (TILs). We modeled loss of function (LOF) in four common anti-PD-1 antibody-responsive syngeneic tumors, MC38, Hepa1-6, CT-26 and EMT-6, by systematical depleting a series of TIL lineages to explore the mechanisms of tumor immunity and treatment. CD8+-T-cells, CD4+-T-cells, Treg, NK cells and macrophages were individually depleted through either direct administration of anti-marker antibodies/reagents or using DTR (diphtheria toxin receptor) knock-in mice, for some syngeneic tumors, where specific subsets were depleted following diphtheria toxin (DT) administration. These LOF experiments revealed distinctive intrinsic tumor immunity and thus different MOAs in their responses to anti-PD-1 antibody among different syngeneic tumors. Specifically, the intrinsic tumor immunity and the associated anti-PD-1 MOA were predominately driven by CD8+ cytotoxic TILs (CTL) in all syngeneic tumors, excluding Hepa1-6 where CD4+ Teff TILs played a key role. TIL-Treg also played a critical role in supporting tumor growth in all four syngeneic models as well as M2-macrophages. Pathway analysis using pharmacodynamic readouts of immuno-genomics and proteomics on MC38 and Hepa1-6 also revealed defined, but distinctive, immune pathways of activation and suppression between the two, closely associated with the efficacy and consistent with TIL-pharmacodynamic readouts. Understanding tumor immune-pathogenesis and treatment MOAs in the different syngeneic animal models, not only assists the selection of the right model for evaluating new immunotherapy of a given MOA, but also can potentially help to understand the potential disease mechanisms and strategize optimal immune-therapies in patients.


Asunto(s)
Antineoplásicos , Inmunoterapia , Animales , Antineoplásicos/metabolismo , Linfocitos T CD8-positivos , Línea Celular Tumoral , Humanos , Linfocitos Infiltrantes de Tumor , Ratones , Linfocitos T Reguladores , Microambiente Tumoral
3.
Fundam Clin Pharmacol ; 36(4): 699-711, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35064580

RESUMEN

Inadequate ß-cell mass is essential for the pathogenesis of type 2 diabetes (T2D). Previous report showed that an immunomodulator FTY720, a sphingosine 1-phosphate (S1P) receptor modulator, sustainably normalized hyperglycemia by stimulating ß-cell in vivo regeneration in db/db mice. We further examined the effects of FTY720 on glucose homeostasis and diabetic complications in a translational nonhuman primate (NHP) model of spontaneously developed diabetes. The male diabetic cynomolgus macaques of 18-19 year old were randomly divided into Vehicle (Purified water, n = 5) and FTY720 (5 mg/kg, n = 7) groups with oral gavage once daily for 10 weeks followed by 10 weeks drug free period. Compared with the Vehicle group, FTY720 effectively lowered HbA1c, blood concentrations of fasting glucose (FBG) and insulin, hence, decreased homeostatic model assessment of insulin resistance (HOMA-IR); ameliorated glucose intolerance and restored glucose-stimulated insulin release, indicating rejuvenation of ß-cell function in diabetic NHPs. Importantly, after withdrawal of FTY720, FBG, and HbA1c remained at low level in the drug free period. Echocardiography revealed that FTY720 significantly reduced proteinuria and improved cardiac left ventricular systolic function measured by increased ejection fraction and fractional shortening in the diabetic NHPs. Finally, flow cytometry analysis (FACS) detected that FTY720 significantly reduced CD4 + and CD8 + T lymphocytes as well as increased DC cells in the circulation. Immunomodulator FTY720 improves glucose homeostasis via rejuvenation of ß-cell function, which can be mediated by suppression of cytotoxic CD8 + T lymphocytes to ß-cells, thus, may be a novel immunotherapy to reverse T2D progression and ameliorate the diabetic complications.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Tipo 2 , Animales , Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Clorhidrato de Fingolimod/farmacología , Glucosa , Hemoglobina Glucada , Homeostasis , Factores Inmunológicos , Insulina , Masculino , Primates , Rejuvenecimiento
4.
Fish Shellfish Immunol ; 34(1): 74-81, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23063539

RESUMEN

Aeromonas hydrophila is a fish pathogen causing systemic infections in aquatic environments, and determining its antigenic proteins is important for vaccine development to reduce economic losses in aquaculture worldwide. Here, an immunoproteomic approach was used to identify immunogenic outer membrane proteins (OMPs) of the Chinese vaccine strain J-1 using convalescent sera from Chinese breams. Seven unique immunogenic proteins were identified by two-dimensional (2-D) electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF-MS). One protein of interest, Omp38, was expressed, and its immunogenicity and protective efficacy were evaluated in Chinese breams. The two groups of fish immunized with the inactivated vaccine and recombinant Omp38 protein showed significant serum IgM antibody levels after vaccination, compared with the fish injected with PBS buffer. In addition, the superoxide dismutase (SOD) activity, lysozyme (LSZ) activity and phagocytosis activity of head kidney lymphocytes of immunized groups were significantly higher than those of the control. The fish receiving inactivated vaccine and recombinant Omp38 protein developed a protective response to a live A. hydrophila challenge 45 days post-immunization, as demonstrated by increased survival of vaccinated fish over the control and by decreased histological alterations in vaccinated fish. Furthermore, protective effect was better in Omp38 group than in the inactivated vaccine group. These results suggest that the recombinant Omp38 protein could effectively stimulate both specific and non-specific immune responses and protect against A. hydrophila infection. Therefore, Omp38 may be developed as a potential vaccine candidate against A. hydrophila infection.


Asunto(s)
Aeromonas hydrophila/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/farmacología , Cyprinidae , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Aeromonas hydrophila/genética , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Acuicultura , Proteínas de la Membrana Bacteriana Externa/genética , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/prevención & control , Reacción en Cadena de la Polimerasa/veterinaria , Vacunación/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA