Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167539

RESUMEN

12-Oxo-phytodienoic acid reductases (OPRs) perform vital functions in plants. However, few studies have been reported in sugarcane (Saccharum spp.), and it is of great significance to systematically investigates it in sugarcane. Here, 61 ShOPRs, 32 SsOPRs, and 36 SoOPRs were identified from R570 (Saccharum spp. hybrid cultivar R570), AP85-441 (Saccharum spontaneum), and LA-purple (Saccharum officinarum), respectively. These OPRs were phylogenetically classified into four groups, with close genes similar structures. During evolution, OPR gene family was mainly expanded via whole-genome duplications/segmental events and predominantly underwent purifying selection, while sugarcane OPR genes may function differently in response to various stresses. Further, ScOPR2, a tissue-specific OPR, which was localized in cytoplasm and cell membrane and actively response to salicylic acid (SA), methyl jasmonate, and smut pathogen (Sporisorium scitamineum) stresses, was cloned from sugarcane. In addition, both its transient overexpression and stable overexpression enhanced the resistance of transgenic plants to pathogen infection, most probably through activating pathogen-associated molecular pattern/pattern-recognition receptor-triggered immunity, producing reactive oxygen species, and initiating mitogen-activated protein kinase cascade. Subsequently, the transmission of SA and hypersensitive reaction were triggered, which stimulated the transcription of defense-related genes. These findings provide insights into the function of ScOPR2 gene for disease resistance.

2.
Plant Cell Rep ; 43(6): 158, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822833

RESUMEN

KEY MESSAGE: Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.


Asunto(s)
Ciclopentanos , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Saccharum , Ácido Salicílico , Transducción de Señal , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Saccharum/genética , Saccharum/microbiología , Transducción de Señal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Nicotiana/genética , Nicotiana/microbiología , Especies Reactivas de Oxígeno/metabolismo , Acetatos/farmacología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Ácido Abscísico/metabolismo , Ralstonia solanacearum/fisiología , Ralstonia solanacearum/patogenicidad
3.
J Agric Food Chem ; 72(23): 13205-13216, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38809782

RESUMEN

Calcium (Ca2+) is a second messenger in various physiological processes within plants. The significance of the Ca2+/H+ exchanger (CAX) has been established in facilitating Ca2+ transport in plants; however, disease resistance functions of the CAX gene remain elusive. In this study, we conducted sequence characterization and expression analysis for a sugarcane CAX gene, ScCAX4 (GenBank Accession Number: MW206380). In order to further investigate the disease resistance functions, this gene was then transiently overexpressed in Nicotiana benthamiana leaves, which were subsequently inoculated with Fusarium solani var. coeruleum. Results showed that ScCAX4 overexpression increased the susceptibility of N. benthamiana to pathogen infection by regulating the expression of genes related to salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways, suggesting its negative role in disease resistance. Furthermore, we genetically transformed the ScCAX4 gene into N. benthamiana and obtained three positive T2 generation lines. Interestingly, the symptomatology of transgenic plants was consistent with that of transient overexpression after pathogen inoculation. Notably, the JA content in transgenic overexpression lines was significantly higher than that in the wild-type. RNA-seq revealed that ScCAX4 could mediate multiple signaling pathways, and the JA signaling pathway played a key role in modulating disease resistance. Finally, a regulatory model was depicted for the increased susceptibility to pathogen infection conferred by the ScCAX4 gene. This study provides genetic resources for sugarcane molecular breeding and the research direction for plant CAX genes.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Saccharum , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Etilenos/metabolismo , Fusarium/fisiología , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/microbiología , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/microbiología , Saccharum/genética , Saccharum/inmunología , Saccharum/microbiología , Ácido Salicílico/metabolismo
4.
J Agric Food Chem ; 72(18): 10506-10520, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38651833

RESUMEN

Sugarcane response to Sporisorium scitamineum is determined by multiple major genes and numerous microeffector genes. Here, time-ordered gene coexpression networks were applied to explore the interaction between sugarcane and S. scitamineum. Totally, 2459 differentially expressed genes were identified and divided into 10 levels, and several stress-related subnetworks were established. Interestingly, the Ca2+ signaling pathway was activated to establish the response to sugarcane smut disease. Accordingly, two CAX genes (ScCAX2 and ScCAX3) were cloned and characterized from sugarcane. They were significantly upregulated under ABA stress but inhibited by MeJA treatment. Furthermore, overexpression of ScCAX2 and ScCAX3 enhanced the susceptibility of transgenic plants to the pathogen infection, suggesting its negative role in disease resistance. A regulatory model for ScCAX genes in disease response was thus depicted. This work helps to clarify the transcriptional regulation of sugarcane response to S. scitamineum stress and the function of the CAX gene in disease response.


Asunto(s)
Señalización del Calcio , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Saccharum , Ustilaginales , Señalización del Calcio/fisiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Saccharum/genética , Saccharum/metabolismo , Ustilaginales/fisiología
5.
BMC Genomics ; 25(1): 22, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166591

RESUMEN

BACKGROUND: Gelsemium elegans is a traditional Chinese medicinal plant and temperature is one of the key factors affecting its growth. RAV (related to ABI3/VP1) transcription factor plays multiple roles in higher plants, including the regulation of plant growth, development, and stress response. However, RAV transcription factor in G. elegans has not been reported. RESULTS: In this study, three novel GeRAV genes (GeRAV1-GeRAV3) were identified from the transcriptome of G. elegans under low temperature stress. Phylogenetic analysis showed that GeRAV1-GeRAV3 proteins were clustered into groups II, IV, and V, respectively. RNA-sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) analyses indicated that the expression of GeRAV1 and GeRAV2 was increased in response to cold stress. Furthermore, the GeRAV1 gene was successfully cloned from G. elegans leaf. It encoded a hydrophilic, unstable, and non-secretory protein that contained both AP2 and B3 domains. The amino acid sequence of GeRAV1 protein shared a high similarity of 81.97% with Camptotheca acuminata CaRAV. Subcellular localization and transcriptional self-activation experiments demonstrated that GeRAV1 was a nucleoprotein without self-activating activity. The GeRAV1 gene was constitutively expressed in the leaves, stems, and roots of the G. elegans, with the highest expression levels in roots. In addition, the expression of the GeRAV1 gene was rapidly up-regulated under abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA) stresses, suggesting that it may be involved in hormonal signaling pathways. Moreover, GeRAV1 conferred improved cold and sodium chloride tolerance in Escherichia coli Rosetta cells. CONCLUSIONS: These findings provided a foundation for further understanding on the function and regulatory mechanism of the GeRAV1 gene in response to low-temperature stress in G. elegans.


Asunto(s)
Gelsemium , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Gelsemium/metabolismo , Estrés Fisiológico/genética , Filogenia , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque por Frío , Proteínas de Plantas/metabolismo
6.
Plant Physiol Biochem ; 200: 107760, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37207494

RESUMEN

Sugarcane is an important sugar and energy crop and smut disease caused by Sporisorium scitamineum is a major fungal disease which can seriously reduce the yield and quality of sugarcane. In plants, TGACG motif binding (TGA) transcription factors are involved in the regulation of salicylic acid (SA) and methyl jasmonate (MeJA) signaling pathways, as well as in response to various biotic and abiotic stresses. However, no TGA-related transcription factor has been reported in Saccharum. In the present study, 44 SsTGA genes were identified from Saccharum spontaneum, and were assorted into three clades (I, II, III). Cis-regulatory elements (CREs) analysis revealed that SsTGA genes may be involved in hormone and stress response. RNA-seq data and RT-qPCR analysis indicated that SsTGAs were constitutively expressed in different tissues and induced by S. scitamineum stress. In addition, a ScTGA1 gene (GenBank accession number ON416997) was cloned from the sugarcane cultivar ROC22, which was homologous to SsTGA1e in S. spontaneum and encoded a nucleus protein. It was constitutively expressed in sugarcane tissues and up-regulated by SA, MeJA and S. scitamineum stresses. Furthermore, transient overexpression of ScTGA1 in Nicotiana benthamiana could enhance its resistance to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum, by regulating the expression of immune genes related to hypersensitive response (HR), ethylene (ET), SA and jasmonic acid (JA) pathways. This study should contribute to our understanding on the evolution and function of the SsTGA gene family in Saccharum, and provide a basis for the functional identification of ScTGA1 under biotic stresses.


Asunto(s)
Saccharum , Ustilaginales , Saccharum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Ustilaginales/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Int J Biol Macromol ; 224: 1-19, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481328

RESUMEN

Wall-associated kinase (WAK) is widely involved in signal transduction, reproductive growth, responses to pathogen infection and metal ion stress in plants. In this study, 19, 12, and 37 SsWAK genes were identified in Saccharum spontaneum, Saccharum hybrid and Sorghum bicolor, respectively. Phylogenetic tree showed that they could be divided into three groups. These WAK genes contained multiple cis-acting elements related to stress, growth and hormone response. RNA-seq analysis demonstrated that SsWAK genes were constitutively expressed in different sugarcane tissues and involved in response to smut pathogen (Sporisorium scitamineum) stress. Additionally, ScWAK1 (GenBank Accession No. OP479864), was then isolated from sugarcane cultivar ROC22. It was highly expressed in leaves and roots and its expression could be induced under SA and MeJA stress. Besides, ScWAK1 was significantly downregulated in both smut-resistant and susceptible sugarcane cultivars in response to S. scitamineum infection. ScWAK1 was a membrane protein without self-activating activity. Furthermore, transient expression of ScWAK1 in Nicotiana benthamiana enhanced the susceptibility of tobacco to the inoculation of Ralstonia solanacearum and Fusarium solani var. coeruleum, suggesting its negative role in disease resistance. The present study reveals the origin, distribution and evolution of WAK gene family and provides potential gene resources for sugarcane molecular breeding.


Asunto(s)
Saccharum , Ustilaginales , Saccharum/metabolismo , Filogenia , Resistencia a la Enfermedad/genética , Ustilaginales/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Enfermedades de las Plantas/genética
8.
Plants (Basel) ; 11(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36145840

RESUMEN

The plant glutamate receptor-like gene (GLR) plays a vital role in development, signaling pathways, and in its response to environmental stress. However, the GLR gene family has not been comprehensively and systematically studied in sugarcane. In this work, 43 GLR genes, including 34 in Saccharum spontaneum and 9 in the Saccharum hybrid cultivar R570, were identified and characterized, which could be divided into three clades (clade I, II, and III). They had different evolutionary mechanisms, the former was mainly on the WGD/segmental duplication, while the latter mainly on the proximal duplication. Those sugarcane GLR proteins in the same clade had a similar gene structure and motif distribution. For example, 79% of the sugarcane GLR proteins contained all the motifs, which proved the evolutionary stability of the sugarcane GLR gene family. The diverse cis-acting regulatory elements indicated that the sugarcane GLRs may play a role in the growth and development, or under the phytohormonal, biotic, and abiotic stresses. In addition, GO and KEGG analyses predicted their transmembrane transport function. Based on the transcriptome data, the expression of the clade III genes was significantly higher than that of the clade I and clade II. Furthermore, qRT-PCR analysis demonstrated that the expression of the SsGLRs was induced by salicylic acid (SA) treatment, methyl jasmonic acid (MeJA) treatment, and abscisic acid (ABA) treatment, suggesting their involvement in the hormone synthesis and signaling pathway. Taken together, the present study should provide useful information on comparative genomics to improve our understanding of the GLR genes and facilitate further research on their functions.

9.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36012566

RESUMEN

During the process of growth and development, plants are prone to various biotic and abiotic stresses. They have evolved a variety of strategies to resist the adverse effects of these stresses. lncRNAs (long non-coding RNAs) are a type of less conserved RNA molecules of more than 200 nt (nucleotides) in length. lncRNAs do not code for any protein, but interact with DNA, RNA, and protein to affect transcriptional, posttranscriptional, and epigenetic modulation events. As a new regulatory element, lncRNAs play a critical role in coping with environmental pressure during plant growth and development. This article presents a comprehensive review on the types of plant lncRNAs, the role and mechanism of lncRNAs at different molecular levels, the coordination between lncRNA and miRNA (microRNA) in plant immune responses, the latest research progress of lncRNAs in plant growth and development, and their response to biotic and abiotic stresses. We conclude with a discussion on future direction for the elaboration of the function and mechanism of lncRNAs.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Desarrollo de la Planta/genética , Plantas/genética , Plantas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Estrés Fisiológico/genética
10.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35887330

RESUMEN

Sugarcane (Saccharum spp.) is an important sugar and energy crop worldwide. As a core regulator of the salicylic acid (SA) signaling pathway, nonexpressor of pathogenesis-related genes 1 (NPR1) plays a significant role in the response of the plant to biotic and abiotic stresses. However, there is currently no report on the NPR1-like gene family in sugarcane. In this study, a total of 18 NPR1-like genes were identified in Saccharum spontaneum and classified into three clades (clade I, II, and III). The cis-elements predicted in the promotors revealed that the sugarcane NPR1-like genes may be involved in various phytohormones and stress responses. RNA sequencing and quantitative real-time PCR analysis demonstrated that NPR1-like genes were differentially expressed in sugarcane tissues and under Sporisorium scitamineum stress. In addition, a novel ShNPR1 gene from Saccharum spp. hybrid ROC22 was isolated by homologous cloning and validated to be a nuclear-localized clade II member. The ShNPR1 gene was constitutively expressed in all the sugarcane tissues, with the highest expression level in the leaf and the lowest in the bud. The expression level of ShNPR1 was decreased by the plant hormones salicylic acid (SA) and abscisic acid (ABA). Additionally, the transient expression showed that the ShNPR1 gene plays a positive role in Nicotiana benthamiana plants' defense response to Ralstonia solanacearum and Fusarium solani var. coeruleum. This study provided comprehensive information for the NPR1-like family in sugarcane, which should be helpful for functional characterization of sugarcane NPR1-like genes in the future.


Asunto(s)
Saccharum , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/genética , Saccharum/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología
11.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613970

RESUMEN

Gelsemium elegans (G. elegans) is a Chinese medicinal plant with substantial economic and feeding values. There is a lack of detailed studies on the mitochondrial genome of G. elegans. In this study, the mitochondrial genome of G. elegans was sequenced and assembled, and its substructure was investigated. The mitochondrial genome of G. elegans is represented by two circular chromosomes of 406,009 bp in length with 33 annotated protein-coding genes, 15 tRNA genes, and three rRNA genes. We detected 145 pairs of repeats and found that four pairs of repeats could mediate the homologous recombination into one major conformation and five minor conformations, and the presence of conformations was verified by PCR amplification and Sanger sequencing. A total of 124 SSRs were identified in the G. elegans mitochondrial genome. The homologous segments between the chloroplast and mitochondrial genomes accounted for 5.85% of the mitochondrial genome. We also predicted 477 RNA potential editing sites and found that the nad4 gene was edited 38 times, which was the most frequent occurrence. Taken together, the mitochondrial genome of G. elegans was assembled and annotated. We gained a more comprehensive understanding on the genome of this medicinal plant, which is vital for its effective utilization and genetic improvement, especially for cytoplasmic male sterility breeding and evolution analysis in G. elegans.


Asunto(s)
Gelsemium , Genoma del Cloroplasto , Genoma Mitocondrial , Fitomejoramiento , Citoplasma , Secuencia de Bases , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...