Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Sci Adv ; 10(19): eadk1857, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718110

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapy shows impressive efficacy treating hematologic malignancies but requires further optimization in solid tumors. Here, we developed a TMIGD2 optimized potent/persistent (TOP) CAR that incorporated the costimulatory domain of TMIGD2, a T and NK cell costimulator, and monoclonal antibodies targeting the IgV domain of B7-H3, an immune checkpoint expressed on solid tumors and tumor vasculature. Comparing second- and third-generation B7-H3 CARs containing TMIGD2, CD28, and/or 4-1BB costimulatory domains revealed superior antitumor responses in B7-H3.TMIGD2 and B7-H3.CD28.4-1BB CAR-T cells in vitro. Comparing these two constructs using in vivo orthotopic human cancer models demonstrated that B7-H3.TMIGD2 CAR-T cells had equivalent or superior antitumor activity, survival, expansion, and persistence. Mechanistically, B7-H3.TMIGD2 CAR-T cells maintained mitochondrial metabolism; produced less cytokines; and established fewer exhausted cells, more central memory cells, and a larger CD8/CD4 T cell ratio. These studies demonstrate that the TOP CAR with TMIGD2 costimulation offered distinct benefits from CD28.41BB costimulation and is effective against solid tumors.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/genética , Animales , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia Adoptiva/métodos , Ratones , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Antígenos B7/metabolismo , Antígenos B7/inmunología , Antígenos CD28/metabolismo , Antígenos CD28/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
2.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38314577

RESUMEN

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Asunto(s)
Decidua , Galectinas , Macrófagos , Preeclampsia , Remodelación Vascular , Preeclampsia/metabolismo , Preeclampsia/inmunología , Embarazo , Femenino , Animales , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Ratones , Humanos , Decidua/metabolismo , Decidua/patología , Ratones Noqueados , Útero/metabolismo , Útero/irrigación sanguínea , Modelos Animales de Enfermedad , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Estudios Retrospectivos , Ratones Endogámicos C57BL , Antígenos CD11
4.
Nat Commun ; 15(1): 11, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167704

RESUMEN

Acute myeloid leukemia (AML) is initiated and sustained by a hierarchy of leukemia stem cells (LSCs), and elimination of this cell population is required for curative therapies. Here we show that transmembrane and immunoglobulin domain containing 2 (TMIGD2), a recently discovered co-stimulatory immune receptor, is aberrantly expressed by human AML cells, and can be used to identify and enrich functional LSCs. We demonstrate that TMIGD2 is required for the development and maintenance of AML and self-renewal of LSCs but is not essential for normal hematopoiesis. Mechanistically, TMIGD2 promotes proliferation, blocks myeloid differentiation and increases cell-cycle of AML cells via an ERK1/2-p90RSK-CREB signaling axis. Targeting TMIGD2 signaling with anti-TMIGD2 monoclonal antibodies attenuates LSC self-renewal and reduces leukemia burden in AML patient-derived xenograft models but has negligible effect on normal hematopoietic stem/progenitor cells. Thus, our studies reveal the function of TMIGD2 in LSCs and provide a promising therapeutic strategy for AML.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Neoplásicas , Humanos , Células Madre Hematopoyéticas , Transducción de Señal , Hematopoyesis , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamiento farmacológico
5.
Clin Cancer Res ; 30(4): 865-876, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38060213

RESUMEN

PURPOSE: The abundance and biological contribution of cancer-associated fibroblasts (CAF) in glioblastoma (GBM) are poorly understood. Here, we aim to uncover its molecular signature, cellular roles, and potential tumorigenesis implications. EXPERIMENTAL DESIGN: We first applied single-cell RNA sequencing (RNA-seq) and bioinformatics analysis to identify and characterize stromal cells with CAF transcriptomic features in human GBM tumors. Then, we performed functional enrichment analysis and in vitro assays to investigate their interactions with malignant GBM cells. RESULTS: We found that CAF abundance was low but significantly correlated with tumor grade, poor clinical outcome, and activation of extracellular matrix remodeling using three large cohorts containing bulk RNA-seq data and clinical information. Proteomic analysis of a GBM-derived CAF line and its secretome revealed fibronectin (FN1) as a critical candidate factor mediating CAF functions. This was validated using in vitro cellular models, which demonstrated that CAF-conditioned media and recombinant FN1 could facilitate the migration and invasion of GBM cells. In addition, we showed that CAFs were more abundant in the mesenchymal-like state (or subtype) than in other states of GBMs. Interestingly, cell lines resembling the proneural state responded to the CAF signaling better for the migratory and invasive phenotypes. CONCLUSIONS: Overall, this study characterized the molecular features and functional impacts of CAFs in GBM, alluding to novel cell interactions mediated by CAFs in the GBM microenvironment.


Asunto(s)
Fibroblastos Asociados al Cáncer , Glioblastoma , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Glioblastoma/patología , Línea Celular Tumoral , Proteómica , Movimiento Celular/genética , Microambiente Tumoral/genética , Fibroblastos/metabolismo
6.
Dev Cell ; 58(23): 2700-2717.e12, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37963469

RESUMEN

How dedifferentiated stem-like tumor cells evade immunosurveillance remains poorly understood. We show that the lineage-plasticity regulator SOX9, which is upregulated in dedifferentiated tumor cells, limits the number of infiltrating T lymphocytes in premalignant lesions of mouse basal-like breast cancer. SOX9-mediated immunosuppression is required for the progression of in situ tumors to invasive carcinoma. SOX9 induces the expression of immune checkpoint B7x/B7-H4 through STAT3 activation and direct transcriptional regulation. B7x is upregulated in dedifferentiated tumor cells and protects them from immunosurveillance. B7x also protects mammary gland regeneration in immunocompetent mice. In advanced tumors, B7x targeting inhibits tumor growth and overcomes resistance to anti-PD-L1 immunotherapy. In human breast cancer, SOX9 and B7x expression are correlated and associated with reduced CD8+ T cell infiltration. This study, using mouse models, cell lines, and patient samples, identifies a dedifferentiation-associated immunosuppression mechanism and demonstrates the therapeutic potential of targeting the SOX9-B7x pathway in basal-like breast cancer.


Asunto(s)
Neoplasias de la Mama , Animales , Femenino , Humanos , Ratones , Linfocitos T CD8-positivos , Terapia de Inmunosupresión , Factor de Transcripción SOX9 , Inhibidor 1 de la Activación de Células T con Dominio V-Set/metabolismo
7.
Cancers (Basel) ; 15(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37444481

RESUMEN

Immunotherapy has transformed lung cancer management, but PSC remains an aggressive subtype with a poor prognosis. This study investigates the differential expression of PD-L1 and alternative immune checkpoints (ICs; B7x, B7-H3, and HHLA2), and genetic alterations in PSCs. Tumor specimens of 41 PSC patients were evaluated. PD-L1, B7x, B7-H3, and HHLA2 were positive in 75.0%, 67.6%, 73.0%, and 91.9% of tumors, respectively. PD-L1 expression was significantly higher in the epithelial compared to the sarcomatoid component (median TPS: 50% vs. 0%, p = 0.010). Expression of PD-L1 in both components was only seen in 32.1% of patients. However, at least one IC was expressed in 92.9% of epithelial and 100% of sarcomatoid components. Furthermore, METex14 was detected in 19.5% of patients and was associated with a higher sarcomatoid percentage. Our preclinical studies revealed that METex14 induced PD-L1 expression via MAPK or PI3K/Akt pathways, and MET inhibitors decreased PD-L1 expression. Our findings demonstrate distinct expressions of ICs in PSC subcomponents. Thus, combination IC inhibition as a therapeutic strategy in PSC warrants further exploration. A high percentage of METex14 in PSC and its role in regulating PD-L1 expression reveal different therapeutic targets in this aggressive NSCLC subtype.

8.
Cell Mol Immunol ; 20(7): 694-713, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37069229

RESUMEN

The B7/CD28 families of immune checkpoints play vital roles in negatively or positively regulating immune cells in homeostasis and various diseases. Recent basic and clinical studies have revealed novel biology of the B7/CD28 families and new therapeutics for cancer therapy. In this review, we discuss the newly discovered KIR3DL3/TMIGD2/HHLA2 pathways, PD-1/PD-L1 and B7-H3 as metabolic regulators, the glycobiology of PD-1/PD-L1, B7x (B7-H4) and B7-H3, and the recently characterized PD-L1/B7-1 cis-interaction. We also cover the tumor-intrinsic and -extrinsic resistance mechanisms to current anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapies in clinical settings. Finally, we review new immunotherapies targeting B7-H3, B7x, PD-1/PD-L1, and CTLA-4 in current clinical trials.


Asunto(s)
Antígenos CD28 , Neoplasias , Humanos , Antígenos CD28/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias/terapia , Inmunoterapia , Biología , Inmunoglobulinas/metabolismo
9.
Front Immunol ; 14: 1333549, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274812

RESUMEN

As the soil of life, the composition and shaping process of the immune microenvironment of the uterus is worth exploring. Macrophages, indispensable constituents of the innate immune system, are essential mediators of inflammation and tissue remodeling as well. Recent insights into the heterogeneity of macrophage subpopulations have renewed interest in their functional diversity in both physiological and pathological settings. Macrophages display remarkable plasticity and switch from one phenotype to another. Intrinsic plasticity enables tissue macrophages to perform a variety of functions in response to changing tissue contexts, such as cancer and pregnancy. The remarkable diversity and plasticity make macrophages particularly intriguing cells given their dichotomous role in either attacking or protecting tumors and semi-allogeneic fetuses, which of both are characterized functionally by immunomodulation and neovascularization. Here, we reviewed and compared novel perspectives on macrophage biology of these two settings, including origin, phenotype, differentiation, and essential roles in corresponding microenvironments, as informed by recent studies on the heterogeneity of macrophage identity and function, as well as their mechanisms that might offer opportunities for new therapeutic strategies on malignancy and pregnancy complications.


Asunto(s)
Neoplasias , Femenino , Embarazo , Humanos , Neovascularización Patológica/patología , Macrófagos , Histiocitos , Microambiente Tumoral
10.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377656

RESUMEN

Cancer immunotherapy targeting the TIGIT/PVR pathway is currently facing challenges. KIR2DL5, a member of the human killer cell, immunoglobulin-like receptor (KIR) family, has recently been identified as another binding partner for PVR. The biology and therapeutic potential of the KIR2DL5/PVR pathway are largely unknown. Here we report that KIR2DL5 was predominantly expressed on human NK cells with mature phenotype and cytolytic function and that it bound to PVR without competition with the other 3 known PVR receptors. The interaction between KIR2DL5 on NK cells and PVR on target cells induced inhibitory synapse formation, whereas new monoclonal antibodies blocking the KIR2DL5-PVR interaction robustly augmented the NK cytotoxicity against PVR+ human tumors. Mechanistically, both intracellular ITIM and ITSM of KIR2DL5 underwent tyrosine phosphorylation after engagement, which was essential for KIR2DL5-mediated NK suppression by recruiting SHP-1 and/or SHP-2. Subsequently, ITIM/SHP-1/SHP-2 and ITSM/SHP-1 downregulated the downstream Vav1/ERK1/2/p90RSK/NF-κB signaling. KIR2DL5+ immune cells infiltrated in various types of PVR+ human cancers. Markedly, the KIR2DL5 blockade reduced tumor growth and improved overall survival across multiple NK cell-based humanized tumor models. Thus, our results revealed functional mechanisms of KIR2DL5-mediated NK cell immune evasion, demonstrated blockade of the KIR2DL5/PVR axis as a therapy for human cancers, and provided an underlying mechanism for the clinical failure of anti-TIGIT therapies.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Humanos , Transducción de Señal , Fosforilación , Neoplasias/terapia , Neoplasias/metabolismo
11.
STAR Protoc ; 3(4): 101818, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36386885

RESUMEN

Human killer cell immunoglobulin-like receptor, three Ig domains and long cytoplasmic tail (KIR3DL3) is expressed on natural killer (NK) cells and is a newly identified inhibitory receptor for B7 family member HERV-H LTR-associating protein 2 (HHLA2). Here, we summarize the isolation and expansion of KIR3DL3+ human NK cells, and in vitro functional characterization of in-house anti-KIR3DL3 monoclonal antibody (mAb). We also describe a human NK cell-based xenogeneic lung tumor model for testing the therapeutic activity of KIR3DL3 blockade in vivo. For complete details on the use and execution of this protocol, please refer to Wei et al. (2021).


Asunto(s)
Células Asesinas Naturales , Neoplasias Pulmonares , Humanos , Receptores KIR/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoglobulinas
12.
Front Oncol ; 12: 1018767, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387154

RESUMEN

The majority of colorectal cancers (CRCs) are microsatellite stable (MSS) and resistant to immunotherapy. The current study explores the possibility of using oncolytic reovirus to sensitize MSS CRC to immune checkpoint inhibition. While reovirus reduced metabolic activity among KRAS Mut cells, microarray/computational analysis revealed microsatellite status-oriented activation of immune-response pathways. Reovirus plus anti-PD-1 treatment increased cell death among MSS cells ex vivo. Reduced tumorigenicity and proliferative index, and increased apoptosis were evident among CT26 [MSS, KRAS Mut], but not in MC38 [microsatellite unstable/MSI, KRAS Wt] syngeneic mouse models under combinatorial treatment. PD-L1-PD-1 signaling axis were differentially altered among CT26/MC38 models. Combinatorial treatment activated the innate immune system, pattern recognition receptors, and antigen presentation markers. Furthermore, we observed the reduction of immunosuppressive macrophages and expansion of effector T cell subsets, as well as reduction in T cell exhaustion. The current investigation sheds light on the immunological mechanisms of the reovirus-anti-PD-1 combination to reduce the growth of MSS CRC.

13.
Genes Dis ; 9(5): 1181-1193, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35873032

RESUMEN

Somatic activating mutations in the epidermal growth factor receptor (EGFR) are one of the most common oncogenic drivers in cancers such as non-small-cell lung cancer (NSCLC), metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Molecular-targeted agents against EGFR signaling pathways have shown robust clinical efficacy, but patients inevitably experience acquired resistance. Although immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have exhibited durable anti-tumor responses in a subset of patients across multiple cancer types, their efficacy is limited in cancers harboring activating gene alterations of EGFR. Increasing studies have demonstrated that upregulation of new B7/CD28 family members such as B7-H3, B7x and HHLA2, is associated with EGFR signaling and may contribute to resistance to EGFR-targeted therapies by creating an immunosuppressive tumor microenvironment (TME). In this review, we discuss the regulatory effect of EGFR signaling on the PD-1/PD-L1 pathway and new B7/CD28 family member pathways. Understanding these interactions may inform combination therapeutic strategies and potentially overcome the current challenge of resistance to EGFR-targeted therapies. We also summarize clinical data of anti-PD-1/PD-L1 therapies in EGFR-mutated cancers, as well as ongoing clinical trials of combination of EGFR-targeted therapies and anti-PD-1/PD-L1 immunotherapies.

14.
Nat Commun ; 13(1): 2506, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523809

RESUMEN

Immune checkpoint molecules play critical roles in regulating the anti-tumor immune response, and tumor cells often exploit these pathways to inhibit and evade the immune system. The B7-family immune checkpoint B7x is widely expressed in a broad variety of cancer types, and is generally associated with advanced disease progression and poorer clinical outcomes, but the underlying mechanisms are unclear. Here, we show that transduction and stable expression of B7x in multiple syngeneic tumor models leads to the expansion of immunosuppressive regulatory T cells (Tregs). Mechanistically, B7x does not cause increased proliferation of Tregs in tumors, but instead promotes the conversion of conventional CD4+ T cells into Tregs. Further, we find that B7x induces global transcriptomic changes in Tregs, driving these cells to adopt an activated and suppressive phenotype. B7x increases the expression of the Treg-specific transcription factor Foxp3 in CD4+ T cells by modulating the Akt/Foxo pathway. B7x-mediated regulation of Tregs reduces the efficacy of anti-CTLA-4 treatment, a therapeutic that partially relies on Treg-depletion. However, combination treatment of anti-B7x and anti-CTLA-4 leads to synergistic therapeutic efficacy and overcomes the B7x-mediated resistance to anti-CTLA-4. Altogether, B7x mediates an immunosuppressive Treg-promoting pathway within tumors and is a promising candidate for combination immunotherapy.


Asunto(s)
Antígenos B7/inmunología , Neoplasias , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Linfocitos T Reguladores
15.
Sci Adv ; 8(17): eabm7012, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35476450

RESUMEN

The immune checkpoint B7-H3 (CD276) is a member of the B7 family that has been studied in the tumor microenvironment and immunotherapy, but its potential role in metabolism remains largely unknown. Here, we show that B7-H3 is highly expressed in mouse and human adipose tissue at steady state, with the highest levels in adipocyte progenitor cells. B7-H3 is rapidly down-regulated upon the initiation of adipocyte differentiation. Combined RNA sequencing and metabolic studies reveal that B7-H3 stimulates glycolytic and mitochondrial activity of adipocyte progenitors. Loss of B7-H3 in progenitors results in impaired oxidative metabolism program and increased lipid accumulation in derived adipocytes. Consistent with these observations, mice knocked out for B7-H3 develop spontaneous obesity, metabolic dysfunction, and adipose tissue inflammation. Our results reveal an unexpected metabolic role for B7-H3 in adipose tissue and open potential new avenues for the treatment of metabolic diseases by targeting the B7-H3 pathway.

16.
Stem Cell Investig ; 8: 18, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631871

RESUMEN

BACKGROUND: Adoptive immunotherapy using CD19-targeted Chimeric antigen receptor T cells (CAR-T) has revolutionized the treatment of relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Data is limited on the propensity of infections and lymphohematopoietic reconstitution after Day 30 (D30) following CAR-T cell therapy. In this study, we evaluated the prevalence and nature of infectious complications in an expanded cohort of DLBCL patients treated with CD19 CAR-T therapy and its association with the dynamics of leukocyte subpopulation reconstitution post-CAR-T cell therapy. METHODS: We conducted a retrospective study including 19 patients who received axicabtagene ciloleucel and investigated associations between cytopenia and infectious complications after D30. RESULTS: Nineteen patients were included, consisting of 42% Hispanic, 32% Caucasian, 21% African-American, and 5% Asian subjects. Post-D30 of CAR-T infusion, 47% patients (n=9) developed an infection and 53% (n=10) remained infection-free. The most common infection type observed was viral (7 patients) followed by bacterial (5 patients) and fungal (3 patients). Of 25 total infectious events, 56% were grade 1 or 2 and 44% were grade 3 with 10 being viral in etiology. To determine the kinetics of lymphohematopoietic reconstitution and its association with infection risk, we evaluated the relationship between cytopenias and rates of infection after D30. Notably, compared to non-infection group, infection group had a higher median absolute lymphocyte count (ALC) (1,000/µL vs. 600/µL, P<0.05), a lower median absolute neutrophil count (ANC)/ALC ratio (1.6 vs. 3.1, P<0.05) and a lower median AMC/ALC at D30 (0.37 vs. 1.67, P<0.05). In addition, we observed that only 22% of patients had recovered ANC >1,500/µL in the infection group as opposed to 70% in the non-infection group at D90 (P<0.05). Fifty-eight percent of the patients (11/19) with relapsed refractory DLBCL achieved a complete response with a median follow-up of 233 days (7.7 months). CONCLUSIONS: Although CAR-T cell therapy is highly effective, infectious complications remain an important cause of morbidity and mortality. Low ANC/ALC and AMC/ALC ratios at D30 are potential novel predictors of infection and can be considered in future prophylactic strategies.

18.
Blood Adv ; 5(18): 3592-3608, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34550328

RESUMEN

Multiple myeloma (MM) is a plasma cell malignancy characterized by the presence of multiple foci in the skeleton. These distinct tumor foci represent cycles of tumor growth and dissemination that seed new clusters and drive disease progression. By using an intratibial Vk*MYC murine myeloma model, we found that CD169+ radiation-resistant tissue-resident macrophages (MPs) were critical for early dissemination of myeloma and disease progression. Depletion of these MPs had no effect on tumor proliferation, but it did reduce egress of myeloma from bone marrow (BM) and its spread to other bones. Depletion of MPs as a single therapy and in combination with BM transplantation improved overall survival. Dissemination of myeloma was correlated with an increased inflammatory signature in BM MPs. It was also correlated with the production of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) by tumor-associated MPs. Exogenous intravenous IL-6 and TNFα can trigger myeloma intravasation in the BM by increasing vascular permeability in the BM and by enhancing the motility of myeloma cells by reducing the adhesion of CD138. Moreover, mice that lacked IL-6 had defects in disseminating myeloma similar to those in MP-depleted recipients. Mice that were deficient in TNFα or TNFα receptor (TNFR) had defects in disseminating MM, and engraftment was also impaired. These effects on dissemination of myeloma required production of cytokines in the radiation-resistant compartment that contained these radiation-resistant BM MPs. Taken together, we propose that egress of myeloma cells from BM is regulated by localized inflammation in foci, driven in part by CD169+ MPs.


Asunto(s)
Mieloma Múltiple , Animales , Médula Ósea , Interleucina-6 , Macrófagos , Ratones , Factor de Necrosis Tumoral alfa
19.
J Immunother Cancer ; 9(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34417325

RESUMEN

BACKGROUND: Although immune checkpoint inhibitors (ICIs), especially programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) axis blockers, exhibit prominent antitumor effects against numerous malignancies, their benefit for patients with prostate cancer (PCa) has been somewhat marginal. This study aimed to assess the feasibility of B7-H3 or HHLA2 as alternative immunotherapeutic targets in PCa. METHODS: Immunohistochemistry was performed to evaluate the expression pattern of PD-L1, B7-H3 and HHLA2 and the infiltration of CD8+ and Foxp3+ lymphocytes in 239 PCa tissues from two independent cohorts. The correlations between B7-H3 and HHLA2 and clinicopathological features, including the presence of CD8+ and Foxp3+ tumor-infiltrating lymphocytes (TILs), were explored. RESULTS: HHLA2 expression was much higher than PD-L1 expression but lower than B7-H3 expression in PCa tissues. High expression of both B7-H3 and HHLA2 was significantly associated with higher Gleason score and tumor stage, lymph node metastasis and dismal overall survival (OS) and cancer-specific survival (CSS). Moreover, a high B7 score, defined as high B7-H3 expression and/or high HHLA2 expression, was an independent prognostic predictor for PCa. Of note, a high B7 score was negatively correlated with CD8+ TILs. Importantly, a new immune classification, based on the B7 score and CD8+ TILs, successfully stratified OS and CSS in PCa. CONCLUSIONS: Both B7-H3 and HHLA2 have a critical impact on the immunosuppressive microenvironment, and the B7 score could be used as an independent prognostic factor for PCa. The B7 score combined with CD8+ TILs could be used as a new immune classification to stratify the risk of death, especially cancer-related death, for patients with PCa. These findings may provide insights that could improve response to immune-related comprehensive therapy for PCa in the future.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias de la Próstata/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Microambiente Tumoral
20.
Sci Immunol ; 6(61)2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244312

RESUMEN

The B7 family ligand HERV-H LTR-associating protein 2 (HHLA2) is an attractive target for cancer immunotherapy because of its coinhibitory function, overexpression in human cancers, and association with poor prognoses. However, the knowledge of the HHLA2 pathway is incomplete. HHLA2 has an established positive receptor transmembrane and immunoglobulin (Ig) domain containing 2 (TMIGD2) but a poorly characterized negative receptor human killer cell Ig-like receptor, three Ig domains, and long cytoplasmic tail (KIR3DL3). Here, KIR3DL3 and TMIGD2 simultaneously bound to different sites of HHLA2. KIR3DL3 was mainly expressed on CD56dim NK and terminally differentiated effector memory CD8+ T (CD8+ TEMRA) cells. KIR3DL3+ CD8+ TEMRA acquired an NK-like phenotype and function. HHLA2 engagement recruited KIR3DL3 to the immunological synapse and coinhibited CD8+ T and NK cell function and killing, inducing immune-evasive HHLA2+ tumors. KIR3DL3 recruited SHP-1 and SHP-2 to attenuate Vav1, ERK1/2, AKT, and NF-κB signaling. HHLA2+ tumors from human kidney, lung, gallbladder, and stomach were infiltrated by KIR3DL3+ immune cells. KIR3DL3 blockade inhibited tumor growth in multiple humanized mouse models. Thus, our findings elucidated the molecular and cellular basis for the inhibitory function of KIR3DL3, demonstrating that the KIR3DL3-HHLA2 pathway is a potential immunotherapeutic target for cancer.


Asunto(s)
Inmunoglobulinas/inmunología , Neoplasias/inmunología , Receptores KIR/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Linfocitos T CD8-positivos/inmunología , Supervivencia Celular , Células Cultivadas , Humanos , Tolerancia Inmunológica , Inmunoglobulinas/genética , Células Asesinas Naturales/inmunología , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Receptores KIR/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA