Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; : e2402854, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087384

RESUMEN

Bacterial infections are closely correlated with the genesis and progression of cancer, and the elimination of cancer-related bacteria may improve the efficacy of cancer treatment. However, the combinatorial therapy that utilizes two or more chemodrugs will increase potential adverse effects. Image-guided photodynamic therapy is a highly precise and potential therapy to treat tumor and microbial infections. Herein, four donor-acceptor-π-bridge-acceptor (D-A-π-A) featured near-infrared (NIR) aggregation-induced emission luminogens (AIEgens) (TQTPy, TPQTPy, TQTC, and TPQTC) with type I and type II reaction oxygen species (ROS) generation capabilities are synthesized. Notably, TQTPy shows mitochondria targeted capacity, the best ROS production efficiency, long-term tumor retention capacity, and more importantly, the three-in-one fluorescence imaging guided therapy against both tumor and microbial infections. Both in vitro and in vivo results validate that TQTPy performs well in practical biomedical application in terms of NIR-fluorescence imaging-guided photodynamic cancer diagnosis and treatment. Moreover, the amphiphilic and positively charged TQTPy is able to specific and ultrafast discrimination and elimination of Gram-positive (G+) Staphylococcus aureus from Gram-negative (G-) Escherichia coli and normal cells. This investigation provides an instructive way for the construction of three-in-one treatment for image-guided photodynamic cancer therapy and bacteria elimination.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 260: 119955, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34082353

RESUMEN

A novel symmetric bianthracene derivative (D2) containing one benzene ring and two ethyl thioglycolates connecting to the benzene ring on both sides of the bianthracene unit was designed and synthesized. D2 can detect Fe3+ and Hg2+ in acetonitrile/water (6:4, v/v) solution via different changes of absorbance and fluorescence in the pH range from 3 to 10. D2 exhibits high colorimetric sensitivity for Fe3+ with low detection limit (1.87 × 10-5 mol/L). The absorbance intensity of D2 in acetonitrile/water solution show a linear response to Fe3+ in the wide concentration range of 0 -1000 µM, which is beneficial for quantitative analysis. D2 also displays highly selective fluorescent sensing for Hg2+ with a low detection limit of 1.07 µM over other metal ions and can accurately detect the existence of Hg2+ in water samples.

3.
ACS Appl Mater Interfaces ; 12(41): 46084-46094, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32955849

RESUMEN

Prior to the maturation of next-generation energy storage devices, the actual lithium-ion batteries for commercial purposes are still expected to fulfill some critical requirements, among which the high energy density, wide operating temperature range, and related long-term cycling stability are the most challenging issues. Herein a multiple additives strategy is employed to simultaneously optimize the solid electrolyte interphase on the large-area anode and cathode in a 2 Ah artificial graphite (AGr)/LiNi0.5Co0.2Mn0.3O2 (NCM523) pouch cell with high gravimetric (>260 Wh kg-1) and volumetric (>630 Wh L-1) energy density. By introducing a rational mixture of electrolyte additives, a highly sulfurized surface layer and a uniform and thin passivation layer are separately formed on the anode and cathode of the AGr/NCM523 pouch cell, exhibiting high storage stability at 60 °C, much improved discharge capacity at -10 and -20 °C, high anodic stability at high voltage of 4.4 V, and stable cyclic performance with a capacity retention of 85.5% after 500 cycles, significantly outperforming the value of 75.7% after only 200 cycles of the cell without additional additives. These results demonstrate the critical effect of simultaneous optimizations of anode and cathode interphase layers to construct stable high-energy-density lithium-ion pouch cells.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 234: 118236, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32179460

RESUMEN

A new indolo[2,3-a]carbazole based colorimetric chemosensor C1 was designed and synthesized. The optical properties of C1 were investigated by UV-vis spectroscopy, UV-vis titrations, and fluorescence spectroscopy. The HOMO and LUMO values of C1 were obtained using density functional theory (DFT) calculations. The results indicate that C1 has specific selectivity and high sensitivity for detection of Cu2+ and Fe3+ ions compared with metal ions (K+, Na+, Mg2+, Zn2+, Cd2+, Pb2+, Hg2+, Ag+, Co2+, Cr2+, Ni2+, Mn2+, Ba2+). The presence of Cu2+ ions leads to visible color change from yellow to colorless in an aqueous-acetonitrile solution, especially. Moreover, the detection limit for the analysis of Cu2+ and Fe3+ ions is found to be as low as 2.93 × 10-7 M and 4.10 × 10-7 M, respectively. Therefore, C1 should have potential applications as a practical colorimetric chemosensor for simultaneous detection of Cu2+ and Fe3+ in the environment and biological systems.

5.
ACS Appl Mater Interfaces ; 7(36): 20418-29, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26327692

RESUMEN

Five novel metal-free organic dyes DQ1-5 containing a dipentyldithieno[3,2-f:2',3'-h]quinoxaline (DPQ) unit were synthesized and applied in dye-sensitized solar cells (DSSCs), where DPQ was employed as a π-spacer for the first time. Their photophysical, electrochemical, and theoretical calculations and photovoltaic properties were systematically investigated. All the five dyes show broad photoresponse. Especially the absorption edges of DQ3-5 extend to 800 nm on the TiO2 films. The inserted electron-rich unit 3,4-ethylenedioxythiophene or electron-withdrawing group benzothiadiazole (BTD) in DPQ-based dyes can greatly influence the optoelectronic properties of the dyes. In addition, the different electron donors also significantly affect the performance of the DSSCs. Under standard global AM 1.5 solar light conditions, the DQ5 sensitized solar cell obtained a power conversion efficiency of 7.12%. The result indicates that the rigid DPQ-based organic dye is a promising candidate for efficient DSSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...