Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(50): eade1660, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38091386

RESUMEN

In their environment, cells must cope with mechanical stresses constantly. Among these, nanoscale deformations of plasma membrane induced by substrate nanotopography are now largely accepted as a biophysical stimulus influencing cell behavior and function. However, the mechanotransduction cascades involved and their precise molecular effects on cellular physiology are still poorly understood. Here, using homemade fluorescent nanostructured cell culture surfaces, we explored the role of Bin/Amphiphysin/Rvs (BAR) domain proteins as mechanosensors of plasma membrane geometry. Our data reveal that distinct subsets of BAR proteins bind to plasma membrane deformations in a membrane curvature radius-dependent manner. Furthermore, we show that membrane curvature promotes the formation of dynamic actin structures mediated by the Rho GTPase CDC42, the F-BAR protein CIP4, and the presence of PI(4,5)P2. In addition, these actin-enriched nanodomains can serve as platforms to regulate receptor signaling as they appear to contain interferon-γ receptor (IFNγ-R) and to lead to the partial inhibition of IFNγ-induced JAK/STAT signaling.


Asunto(s)
Actinas , Mecanotransducción Celular , Actinas/metabolismo , Polimerizacion , Membrana Celular/metabolismo , Proteínas de Unión al GTP rho/metabolismo
2.
Curr Protoc ; 3(12): e943, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058263

RESUMEN

For the past decade, three-dimensional (3D) culture models have been emerging as powerful tools in translational research to overcome the limitations of two-dimensional cell culture models. Thanks to their ability to recapitulate the phenotypic and molecular heterogeneity found in numerous organs, organoids have been used to model a broad range of tumors, such as colorectal cancer. Several approaches to generate organoids exist, with protocols using either pluripotent stem cells, embryonic stem cells, or organ-restricted adult stem cells found in primary tissues, such as surgical resections as starting material. The latter, so-called patient-derived organoids (PDOs), have shown their robustness in predicting patient drug responses compared to other models. Because of their origin, PDOs are natural offspring of the patient tumor or healthy surrounding tissue, and therefore, have been increasingly used to develop targeted drugs and personalized therapies. Here, we present a new protocol to generate patient-derived colon organoids (PDCOs) from tumor and healthy tissue biopsies. We emphasize budget-friendly and reproducible techniques, which are often limiting factors in this line of research that restrict the development of this 3D-culture model to a small number of laboratories worldwide. Accordingly, we describe efficient and cost-effective techniques to achieve immunoblot and high-resolution microscopy on PDCOs. Finally, a novel strategy of lentiviral transduction of PDCOs, which could be applied to all organoid models, is detailed in this article. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Establishment of PDCOs from biopsies Basic Protocol 2: Long-term maintenance and expansion of PDCOs in BME domes Basic Protocol 3: Cryopreservation and thawing of PDCOs Basic Protocol 4: Lentiviral transduction of PDCOs Basic Protocol 5: Immunoblot and evaluation of variability between donors Basic Protocol 6: Immunofluorescence labeling and high-resolution microscopy of PDCOs Basic Protocol 7: Transcriptomic analyses of PDCOs by RT-qPCR.


Asunto(s)
Lentivirus , Neoplasias , Adulto , Humanos , Lentivirus/genética , Colon , Técnicas de Cultivo de Célula/métodos , Neoplasias/metabolismo , Neoplasias/patología , Organoides/metabolismo
3.
Nat Cell Biol ; 25(3): 425-438, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797476

RESUMEN

Activation of the JAK-STAT pathway by type I interferons (IFNs) requires clathrin-dependent endocytosis of the IFN-α and -ß receptor (IFNAR), indicating a role for endosomal sorting in this process. The molecular machinery that brings the selective activation of IFN-α/ß-induced JAK-STAT signalling on endosomes remains unknown. Here we show that the constitutive association of STAM with IFNAR1 and TYK2 kinase at the plasma membrane prevents TYK2 activation by type I IFNs. IFN-α-stimulated IFNAR endocytosis delivers the STAM-IFNAR complex to early endosomes where it interacts with Hrs, thereby relieving TYK2 inhibition by STAM and triggering signalling of IFNAR at the endosome. In contrast, when stimulated by IFN-ß, IFNAR signalling occurs independently of Hrs as IFNAR is sorted to a distinct endosomal subdomain. Our results identify the molecular machinery that controls the spatiotemporal activation of IFNAR by IFN-α and establish the central role of endosomal sorting in the differential regulation of JAK-STAT signalling by IFN-α and IFN-ß.


Asunto(s)
Interferón Tipo I , Quinasas Janus , Quinasas Janus/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Interferón-alfa/farmacología , Interferón-alfa/metabolismo , Endosomas/metabolismo
4.
J Cell Sci ; 135(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35703091

RESUMEN

Endocytic mechanisms actively regulate plasma membrane composition and sustain fundamental cellular functions. Recently, we identified a clathrin-independent endocytic (CIE) modality mediated by the BAR domain protein endophilin-A3 (endoA3, encoded by SH3GL3), which controls the cell surface homeostasis of the tumor marker CD166 (also known as ALCAM). Deciphering the molecular machinery of endoA3-dependent CIE should therefore contribute to a better understanding of its pathophysiological role, which remains so far unknown. Here, we investigate the role of actin, Rho GTPases and microtubules, which are major players in CIE processes, in this mechanism. We show that the actin cytoskeleton is dynamically associated with endoA3- and CD166-positive endocytic carriers, and that its perturbation strongly inhibits the process of CD166 uptake. We also reveal that the Rho GTPase Rac1, but not Cdc42, is a master regulator of this endocytic route. Finally, we provide evidence that microtubules and kinesin molecular motors are required to potentiate endoA3-dependent endocytosis. Of note, our study also highlights potential compensation phenomena between endoA3-dependent CIE and macropinocytosis. Altogether, our data deepen our understanding of this CIE modality and further differentiate it from other unconventional endocytic mechanisms. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Clatrina , Endocitosis , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Humanos , Microtúbulos/metabolismo , Proteína de Unión al GTP rac1/metabolismo
5.
Nat Commun ; 13(1): 215, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017526

RESUMEN

Macrophages are integral to the pathogenesis of atherosclerosis, but the contribution of distinct macrophage subsets to disease remains poorly defined. Using single cell technologies and conditional ablation via a LysMCre+ Clec4a2flox/DTR mouse strain, we demonstrate that the expression of the C-type lectin receptor CLEC4A2 is a distinguishing feature of vascular resident macrophages endowed with athero-protective properties. Through genetic deletion and competitive bone marrow chimera experiments, we identify CLEC4A2 as an intrinsic regulator of macrophage tissue adaptation by promoting a bias in monocyte-to-macrophage in situ differentiation towards colony stimulating factor 1 (CSF1) in vascular health and disease. During atherogenesis, CLEC4A2 deficiency results in loss of resident vascular macrophages and their homeostatic properties causing dysfunctional cholesterol metabolism and enhanced toll-like receptor triggering, exacerbating disease. Our study demonstrates that CLEC4A2 licenses monocytes to join the vascular resident macrophage pool, and that CLEC4A2-mediated macrophage homeostasis is critical to combat cardiovascular disease.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/genética , Vasos Sanguíneos/metabolismo , Lectinas Tipo C/genética , Macrófagos/metabolismo , Animales , Apolipoproteínas E/deficiencia , Aterosclerosis/metabolismo , Aterosclerosis/patología , Vasos Sanguíneos/patología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Muerte Celular/genética , Diferenciación Celular , Linaje de la Célula/genética , Colesterol/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Homeostasis/genética , Humanos , Lectinas Tipo C/deficiencia , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Monocitos/patología , Transducción de Señal , Análisis de la Célula Individual
6.
Front Immunol ; 11: 615603, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552080

RESUMEN

Like most plasma membrane proteins, type I interferon (IFN) receptor (IFNAR) traffics from the outer surface to the inner compartments of the cell. Long considered as a passive means to simply control subunits availability at the plasma membrane, an array of new evidence establishes IFNAR endocytosis as an active contributor to the regulation of signal transduction triggered by IFN binding to IFNAR. During its complex journey initiated at the plasma membrane, the internalized IFNAR complex, i.e. IFNAR1 and IFNAR2 subunits, will experience post-translational modifications and recruit specific effectors. These finely tuned interactions will determine not only IFNAR subunits destiny (lysosomal degradation vs. plasma membrane recycling) but also the control of IFN-induced signal transduction. Finally, the IFNAR system perfectly illustrates the paradigm of the crosstalk between membrane trafficking and intracellular signaling. Investigating the complexity of IFN receptor intracellular routes is therefore necessary to reveal new insight into the role of IFNAR membrane dynamics in type I IFNs signaling selectivity and biological activity.


Asunto(s)
Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/fisiología , Animales , Membrana Celular/metabolismo , Citosol/metabolismo , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Glicosilación , Humanos , Interferones/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Tirosina Quinasas/metabolismo , Ratas , Receptor de Interferón alfa y beta/química , Factores de Transcripción STAT/metabolismo
7.
Biol Aujourdhui ; 212(1-2): 45-51, 2018.
Artículo en Francés | MEDLINE | ID: mdl-30362455

RESUMEN

Membrane receptors control essential processes such as cell growth, adhesion, differentiation and metabolism through the activation of specific signaling pathways. Nowadays, these receptors are not only known to signal from the plasma membrane but also from intracellular compartments. Indeed, after being internalized with their ligands via different endocytic pathways, some membrane receptors can initiate signal only after reaching the sorting endosome where they associate with specific protein partners. This review illustrates how this spatio-temporal regulation of signal transduction can occur, with several examples, including interferon receptors which activate JAK/STAT signaling pathways. The literature presented here explains why this control of signaling pathways occuring at the endosomal level creates a higher degree of tuning for the affected cellular processes.


Asunto(s)
Endocitosis/fisiología , Endosomas/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Espacio Intracelular/metabolismo , Animales , Receptores ErbB/metabolismo , Humanos , Transporte de Proteínas , Receptor trkA/metabolismo , Transducción de Señal/fisiología , Receptores Toll-Like/metabolismo
8.
Nat Commun ; 7: 13476, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917878

RESUMEN

Type-I interferons (IFNs) play a key role in the immune defences against viral and bacterial infections, and in cancer immunosurveillance. We have established that clathrin-dependent endocytosis of the type-I interferon (IFN-α/ß) receptor (IFNAR) is required for JAK/STAT signalling. Here we show that the internalized IFNAR1 and IFNAR2 subunits of the IFNAR complex are differentially sorted by the retromer at the early endosome. Binding of the retromer VPS35 subunit to IFNAR2 results in IFNAR2 recycling to the plasma membrane, whereas IFNAR1 is sorted to the lysosome for degradation. Depletion of VPS35 leads to abnormally prolonged residency and association of the IFNAR subunits at the early endosome, resulting in increased activation of STAT1- and IFN-dependent gene transcription. These experimental data establish the retromer complex as a key spatiotemporal regulator of IFNAR endosomal sorting and a new factor in type-I IFN-induced JAK/STAT signalling and gene transcription.


Asunto(s)
Interferón-alfa/farmacología , Interferón beta/farmacología , Quinasas Janus/metabolismo , Complejos Multiproteicos/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Proteínas de Transporte Vesicular/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos , Receptor de Interferón alfa y beta/metabolismo , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...