Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38543383

RESUMEN

The use of Type IV cylinders for gas storage is becoming more widespread in various sectors, especially in transportation, owing to the lightweight nature of this type of cylinder, which is composed of a polymeric liner that exerts a barrier effect and an outer composite material shell that primarily imparts mechanical strength. In this work, the failure analysis of an HDPE liner in a Type IV cylinder for high-pressure storage was carried out. The breakdown occurred during a cyclic pressure test at room temperature and manifested in the hemispherical head area, as cracks perpendicular to the liner pinch-off line. The failed sample was thoroughly investigated and its characteristics were compared with those of other liners at different stages of production of a Type IV cylinder (blow molding, curing of the composite material). An examination of the liner showed that no significant chemical and morphological changes occurred during the production cycle of a Type IV cylinder that could justify the liner rupture, and that the most likely cause of failure was a design-related fatigue phenomenon.

2.
Molecules ; 26(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069021

RESUMEN

The present work investigated the effect of Polylactic acid (PLA) fibers produced by centrifugal spinning with incorporated BaTiO3 particles to improve their bacteriostatic behavior. The PLA matrix and three composites, presenting three different amounts of fillers, were subjected to UV/O3 treatment monitoring the possible modifications that occurred over time. The morphological and physical properties of the surfaces were characterized by different microscopic techniques, contact angle, and surface potential measurements. Subsequently, the samples were tested in vitro with human dermal fibroblasts (HDF) to verify the cytotoxicity of the substrates. No significant differences between the PLA matrix and composites emerged; the high hydrophobicity of the fibers, derived by the polymer structure, represented an obstacle limiting the fibroblast attachment. Samples underwent bacterial exposure (Staphylococcus epidermidis) for 12 and 24 h. Increasing the concentration of BT, the number of living bacteria and their distribution decreased in comparison with the PLA matrix suggesting an effect of the inorganic filler, which generates a neutralization effect leading to reactive oxygen species (ROS) generation and subsequently to bacterial damages. These results suggest that the barium titanate (BT) fillers clearly improve the antibacterial properties of PLA fibers after aging tests made before bacterial exposure, representing a potential candidate in the creation of composites for medical applications.


Asunto(s)
Antibacterianos/farmacología , Compuestos de Bario/farmacología , Poliésteres/farmacología , Titanio/farmacología , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Centrifugación , Dermis/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Espectrometría por Rayos X , Staphylococcus epidermidis/efectos de los fármacos , Agua/química
3.
Acta Biomater ; 126: 259-276, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33727194

RESUMEN

Previous studies using gram-positive and -negative bacteria demonstrated that hydrolysis of silicon nitride (Si3N4) in aqueous suspensions elutes nitrogen and produces gaseous ammonia while buffering pH. According to immunochemistry assays, fluorescence imaging, and in situ Raman spectroscopy, we demonstrate here that the antipathogenic surface chemistry of Si3N4 can be extended to polymethylmethacrylate (PMMA) by compounding it with a minor fraction (~8 vol.%) of Si3N4 particles without any tangible loss in bulk properties. The hydrolytic products, which were eluted from partly exposed Si3N4 particles at the composite surface, exhibited fungicidal action against Candida albicans. Using a specific nitrative stress sensing dye and highly resolved fluorescence micrographs, we observed in situ congestion of peroxynitrite (ONOO-) radicals in the mitochondria of the Candida cells exposed to the PMMA/Si3N4 composite, while these radicals were absent in the mitochondria of identical cells exposed to monolithic PMMA. These in situ observations suggest that the surface chemistry of Si3N4 mimics the antifungal activity of macrophages, which concurrently produce NO radicals and superoxide anions (O2•-) resulting in the formation of candidacidal ONOO-. The fungicidal properties of PMMA/Si3N4 composites could be used in dental appliances to inhibit the uncontrolled growth of Candida albicans and ensuing candidiasis while being synergic with chemoprophylaxis. STATEMENT OF SIGNIFICANCE: In a follow-up of previous studies of gram-positive and gram-negative bacteria, we demonstrate here that the antipathogenic surface chemistry of Si3N4 could be extended to polymethylmethacrylate (PMMA) containing a minor fraction (~8 vol.%) of Si3N4 particles without tangible loss in bulk properties. Hydrolytic products eluted from Si3N4 particles at the composite surface exhibited fungicidal action against Candida albicans. Highly resolved fluorescence microscopy revealed congestion of peroxynitrite (ONOO-) radicals in the mitochondria of the Candida cells exposed to the PMMA/Si3N4 composite, while radicals were absent in the mitochondria of identical cells exposed to monolithic PMMA. The fungicidal properties of PMMA/Si3N4 composites could be used in dental appliances to inhibit uncontrolled growth of Candida albicans and ensuing candidiasis in synergy with chemoprophylaxis.


Asunto(s)
Antifúngicos , Candida albicans , Antibacterianos , Antifúngicos/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Polimetil Metacrilato
4.
Antibiotics (Basel) ; 9(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266277

RESUMEN

With the increased scientific interest in green technologies, many researches have been focused on the production of polymeric composites containing naturally occurring reinforcing particles. Apart from increasing mechanical properties, these additions can have a wide range of interesting effects, such as increasing the resistance to bacterial and fungal colonization. In this work, different amounts of two different natural products, namely neem and turmeric, were added to polyethylene to act as a natural antibacterial and antifungal product for food packaging applications. Microscopic and spectroscopic characterization showed that fractions of up to 5% of these products could be dispersed into low-molecular weight polyethylene, while higher amounts could not be properly dispersed and resulted in an inhomogeneous, fragile composite. In vitro testing conducted with Escherichia coli, Staphylococcus aureus, and Candida albicans showed a reduced proliferation of pathogens when compared to the polyethylene references. In particular, turmeric resulted in being more effective against E. coli when compared to neem, while they had similar performances against S. aureus. Against C. albicans, only neem was able to show a good antifungal behavior, at high concentrations. Tensile testing showed that the addition of reinforcing particles reduced the mechanical properties of polyethylene, and in the case of turmeric, it was further reduced by UV irradiation.

5.
Dent Mater ; 36(12): 1635-1644, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33168225

RESUMEN

Early detection of dental caries and variations in composition/structure of both enamel and dentin represents an important issue in modern dentistry. Demineralization has been associated to teeth discoloration, development of caries, and formation of cavities. OBJECTIVE: In this study, we systematically monitored the processes of demineralization/remineralization in dentin samples by means of three different spectroscopic techniques, namely, Raman spectroscopy, X-Ray Photo-electron spectroscopy (XPS), and X-Ray Diffractometry (XRD). METHODS: Bovine dentin samples were first exposed to acidic solutions and their structure systematically monitored as a function of time and pH. Then, the samples were rinsed in artificial saliva to simulate remineralization. RESULTS: The above three spectroscopic techniques provided quantitative structural information spanning from the nanometer to the millimeter scale of sample penetration depth. An irreversible level of demineralization was reached when dentin was exposed to pH 2 beyond a time threshold of 6h, successive treatments with artificial saliva being unable to restore the mineral fraction. On the other hand, short-term treatments at pH 5 and long-term treatments at pH 6 could partially or completely recover the dentin structure within one week of remineralization treatment. SIGNIFICANCE: Two specific Raman parameters, namely, the bandwidth of the symmetric phosphate-stretching signal and the mineral-to-matrix intensity ratio, showed strong correlations with XPS and XRD data, and matched laser microscopy observations. Such correlations open the path to apply Raman spectroscopy in monitoring dentin demineralization in vivo and provide quantitative working algorithms for the prevention of oral caries.


Asunto(s)
Caries Dental , Desmineralización Dental , Animales , Bovinos , Caries Dental/diagnóstico , Esmalte Dental , Dentina , Espectrometría Raman , Desmineralización Dental/diagnóstico , Remineralización Dental
6.
Materials (Basel) ; 13(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142858

RESUMEN

Tooth loss impairs mastication, deglutition and esthetics and affects systemic health through nutritional deficiency, weight loss, muscle weakness, delayed wound healing, and bone fragility. Approximately 90% of tooth loss is due to dental caries and periodontal disease. Accordingly, early treatment of dental caries is essential to maintaining quality of life. To date, the clinical diagnosis of dental caries has been based on each dentist's subjective assessment, but this visual method lacks objectivity. To improve diagnostic ability, highly sensitive quantitative methods have been developed for the diagnosis and prevention of dental caries and are gradually becoming a mandatory item in modern dentistry. High-resolution Raman spectroscopy is a suitable tool for recognizing the subtle structural changes that occur in dental enamel in already developed or, more importantly, incipient dental caries. Raman analysis could soon emerge as a breakthrough in dentistry because of its high diagnostic sensitivity. In this study, we build upon our previous findings in a new analysis of dental caries using Raman spectroscopy imaging and discuss the possibility of using Raman photonic imaging in support of objective diagnostics in dentistry. Our findings support the Raman method of caries detection in comparison with other conventional or new approaches.

7.
Biomed Mater ; 16(1)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-32906100

RESUMEN

Surface roughness, bioactivity, and antibacterial properties are desirable in skeletal implants. We hot-pressed a mix of particulate sodium chloride (NaCl) salt and silicon nitride (ß-Si3N4) onto the surface of bulk PEEK. NaCl grains were removed by leaching in water, resulting in a porous PEEK surface embedded with sim15 vol% ß-Si3N4particles. This functionalized surface showed the osteogenic and antibacterial properties previously reported in bulk silicon nitride implants. Surface enhancement of PEEK with ß-Si3N4could improve the performance of spinal fusion cages, by facilitating arthrodesis and resisting bacteria.


Asunto(s)
Antibacterianos , Benzofenonas , Materiales Biocompatibles , Polímeros , Compuestos de Silicona , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Benzofenonas/química , Benzofenonas/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ensayo de Materiales , Osteogénesis/efectos de los fármacos , Polímeros/química , Polímeros/farmacología , Prótesis e Implantes/microbiología , Compuestos de Silicona/química , Compuestos de Silicona/farmacología , Cloruro de Sodio/química , Propiedades de Superficie
8.
Materials (Basel) ; 13(13)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610510

RESUMEN

The purpose of the present study was to compare the wear behavior of ceramic-on-vitamin-E-diffused crosslinked polyethylene (Vit-E XLPE) hip bearings employing the gold standard oxide ceramic, zirconia (ZrO2)-toughened alumina (Al2O3) (ZTA, BIOLOX®delta) and a new non-oxide ceramic, silicon nitride (Si3N4, MC2®). In vitro wear test was performed using a 12-station hip joint simulator. The test was carried out by applying the kinematic inputs and outputs as recommended by ISO 14242-1:2012. Vitamin-E-diffused crosslinked polyethylene (Vit-E XLPE) acetabular liners (E1®) were coupled with Ø28-mm ZTA and Si3N4 femoral heads. XLPE liner weight loss over 5 million cycles (Mc) of testing was compared between the two different bearing couples. Surface topography, phase contents, and residual stresses were analyzed by contact profilometer and Raman microspectroscopy. Vit-E XLPE liners coupled with Si3N4 heads produced slightly lower wear rates than identical liners with ZTA heads. The mean wear rates (corrected for fluid absorption) of liners coupled with ZTA and Si3N4 heads were 0.53 ± 0.24 and 0.49 ± 0.23 mg/Mc after 5 Mc of simulated gait, respectively. However, after wear testing, the ZTA heads retained a smoother topography and showed fewer surface stresses than the Si3N4 ones. Note that no statistically significant differences were found in the above comparisons. This study suggests that the tribochemically formed soft silica layer on the Si3N4 heads may have reduced friction and slightly lowered the wear of the Vit-E XLPE liners. Considering also that the toughness of Si3N4 is superior to ZTA, the present wear data represent positive news in the future development of long-lasting hip components.

9.
J Mech Behav Biomed Mater ; 103: 103557, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32090951

RESUMEN

A 3D-additive manufacturing approach produced a dense Si3N4 ceramic coating on a biomedical grade commercially pure titanium (cp-Ti) substrate by an automatic laser-sintering procedure. Si3N4 coatings could be prepared with thicknesses from the single to the tens of microns. A coating thickness, t = 15 ± 5 µm, was selected for this study, based on projections of homogeneity and scratching resistance. The Si3N4 coating met the 20 N threshold required for biomaterial applications, according to the standard scratch testing (ASTM C1624-05). The Si3N4 coating imparted both the antibacterial and osteogenic properties of bulk Si3N4 to the cp-Ti substrate. Both properties were comparable to those previously described for bulk Si3N4 biomedical implants. The newly developed Si3N4-coating was applied to commercially available Ti-alloy acetabular shells for total hip arthroplasty. A "glowing" test based on luciferase gene transformation was applied to visualize the colonization of gram-negative Escherichia coli on Si3N4-coated and uncoated Ti-alloy acetabular shells. The results showed that the coating technology conferred resistance to Staphylococcus epidermidis and Escherichia coli adhesion onto the bulk acetabular sockets.


Asunto(s)
Ortopedia , Titanio , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Ensayo de Materiales , Compuestos de Silicona , Propiedades de Superficie
10.
Mater Sci Eng C Mater Biol Appl ; 106: 110278, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31753392

RESUMEN

Using a simple and innovative sandblasting process, disks of monolithic biomedical silicon nitride (ß-Si3N4) were texturized with a matrix of regular, discrete square trenches with a total depth in the range of hundreds of microns. The process consisted of sandblasting Si3N4 substrates through a stainless-steel wire-mesh (150 or 200 µm) using abrasive silicon carbide powders (α-SiC, ∼40 µm) under 1,034 kPa (150 psi) of gas pressure. The depth of the porosities could be controlled varying both the treatment time and the distance from the surface. Part of the samples were then filled with 45S5 Bioglass® powders to improve the osteointegration and stimulate the production of bone tissue. Due to the increased macroscopic and microscopic roughness, biological testing using human osteosarcoma cells (SaOS-2) showed improved cell proliferation and greater production of both mineral (hydroxyapatite) and organic (collagen) phases on the patterned surfaces compared to untreated ß-Si3N4 or to the biomedical titanium control samples. Both of these effects were further enhanced when the porosities were filled with Bioglass®.


Asunto(s)
Cerámica/química , Compuestos de Silicona/química , Aleaciones/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Porosidad , Propiedades de Superficie
11.
Mater Sci Eng C Mater Biol Appl ; 105: 110053, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31546420

RESUMEN

The surface chemistry of silicon nitride plays an important role in stimulating osteoblasts to proliferate and produce bone tissue with improved efficiency. This property, which is advantageous in spinal fusion surgery has a chemical origin and is a direct consequence of the cleavage of covalent SN bonds in an aqueous environment. Building upon a wealth of published research on the stimulation of osteoblastic activity by silicon, the aim of this paper is to explore the role of nitrogen and, more specifically, the N/Si atomic ratio on the osteogenic response of Si3N4. The surface stoichiometry of Si3N4 was gradually altered toward a silicon-rich composition by systematically treating the Si3N4 surface with a high-power pulsed laser in an Ar gas atmosphere (i.e., operated at different pulse times, spot sizes, and voltages). Different analytical probes were used to characterize the surface including X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and energy dispersive X-ray spectroscopy (EDS). Osteoconductivity was tested in vitro using SaOS-2 osteosarcoma cells, and samples with different surface stoichiometry were compared for their osteogenic response. These experiments clearly indicated a fundamental role for nitrogen off-stoichiometry in osteogenesis, and showed that both cell proliferation and growth of bone tissue diminished with decreasing nitrogen content.


Asunto(s)
Cerámica , Ensayo de Materiales , Nitrógeno , Osteogénesis/efectos de los fármacos , Compuestos de Silicona , Línea Celular Tumoral , Cerámica/química , Cerámica/farmacología , Humanos , Nitrógeno/química , Nitrógeno/farmacología , Compuestos de Silicona/química , Compuestos de Silicona/farmacología
12.
Int J Mol Sci ; 20(17)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438530

RESUMEN

The availability of osteoinductive biomaterials has encouraged new therapies in bone regeneration and has potentially triggered paradigmatic shifts in the development of new implants in orthopedics and dentistry. Among several available synthetic biomaterials, bioceramics have gained attention for their ability to induce mesenchymal cell differentiation and successive bone formation when implanted in the human body. However, there is currently a lack of understanding regarding the fundamental biochemical mechanisms by which these materials can induce bone formation. Phenomenological studies of retrievals have clarified the final effect of bone formation, but have left the chemical interactions at the cell-material interface uncharted. Accordingly, the knowledge of the intrinsic material properties relevant for osteoblastogenesis and osteoinduction remains incomplete. Here, we systematically monitored in vitro the chemistry of mesenchymal cell metabolism and the ionic exchanges during osteoblastogenesis on selected substrates through conventional biological assays as well as via in situ and ex situ spectroscopic techniques. Accordingly, the chemical behavior of different bioceramic substrates during their interactions with mesenchymal cells could be unfolded and compared with that of biomedical titanium alloy. Our goal was to clarify the cascade of chemical equations behind the biological processes that govern osteoblastogenic effects on different biomaterial substrates.


Asunto(s)
Materiales Biocompatibles/química , Titanio/química , Regeneración Ósea/fisiología , Huesos/citología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Humanos , Células Madre Mesenquimatosas/citología , Osteogénesis/fisiología , Espectrometría Raman
13.
Heliyon ; 4(12): e01016, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30560211

RESUMEN

The surfaces of silicon nitride (ß-Si3N4) and zirconia toughened alumina (ZTA) were patterned using a high-energy laser source, which operated at a wavelength of 1064 nm. The patterning procedure yielded a series regular, cylindrical cavities 500 and 300 µm in diameter and depth, respectively. These cavities were subsequently filled with bioglass mixed with different fractions of Si3N4 powder (0, 5, and 10 mol.%) to obtain bioactive functionalized bioceramic surfaces. The laser-patterned samples were first characterized using several spectroscopic techniques before and after functionalization, and then tested in vitro with respect to their osteoconductivity using a human osteosarcoma cell line (SaOS-2). After in vitro testing, fluorescence microscopy was used to address the biological response and to estimate osteopontin and osteocalcin protein contents and distributions. The presence of bioglass greatly enhanced the biological response of both ceramic surfaces, but mainly induced production of inorganic apatite. On the other hand, the addition of minor fraction of Si3N4 into the bioglass-filled holes greatly enhanced bio-mineralization and stimulated the SaOS-2 cells to produce higher amounts of bone extracellular matrix (collagen and proteins), thus enhancing the osteopontin to osteocalcin ratio. It was also observed that the presence of a fraction of Si3N4 in the powder mixture filling the holes bestowed more uniform cell colonization on the otherwise bioinert ZTA surface.

14.
Mater Sci Eng C Mater Biol Appl ; 71: 446-451, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27987730

RESUMEN

In this paper, an updated analytical model for the kinetics of the tetragonal to monoclinic (t→m) polymorphic transformation in ZTA composites for hip joints is proposed and discussed. The model builds upon the so-called Mehl-Avrami-Johnson (MAJ) description of transformation kinetics, which combines two overlapping processes: nucleation of monoclinic sites, and their successive growth. Dependencies on two specific factors are introduced in the model, namely the initial fraction of monoclinic polymorph as received from the manufacturer, and the presence of different types of transition-metal stains (e.g., Ti, CoCr, and Fe) on the ZTA surface. These two factors were studied because clear indications of their potential roles on the environmental stability of implantable ZTA components were found in previous phenomenological analyses of retrievals. Nucleation and growth of monoclinic domains are two key processes whose interplay decides the actual kinetics of the overall transformation process according to two main parameters: an apparent activation energy value function of time and temperature, and a nuclei growth exponent. These parameters were clearly altered by the presence of transition metal contamination, whose effect was incorporated into the model to explain exacerbations of surface degradation. In accordance with a general analytical description of transformation kinetics for isothermal or isochronal evolutions in terms of time and temperature, the modified model of the MAJ description assesses the effect of the initial monoclinic fraction. The updated model has been validated using systematic in vitro experiments, and appears to partly reconcile in vitro and in vivo data of t→m transformation discrepancies in ZTA hip components.


Asunto(s)
Óxido de Aluminio/química , Prótesis de Cadera , Modelos Biológicos , Modelos Químicos , Circonio/química , Humanos , Cinética
15.
Mater Sci Eng C Mater Biol Appl ; 71: 552-557, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27987743

RESUMEN

Understanding the intrinsic reason(s) for the enhanced tetragonal to monoclinic (t→m) polymorphic phase transformation observed on metal-stained surfaces of zirconia-toughened alumina (ZTA) requires detailed knowledge of off-stoichiometry reactions at the molecular scale. In this context, knowledge of the mechanism(s) for oxygen vacancy creation or annihilation at the material surface is a necessary prerequisite. The crucial aspect of the surface destabilization phenomenon, namely the availability of electrons and holes that allow for vacancy creation/annihilation, is elucidated in this paper. Metal-enhanced alterations of the oxygen sublattice in both Al2O3 and ZrO2 of the ZTA composite play a decisive role in accelerating the polymorphic transformation. According to spectroscopic evidences obtained through nanometer-scale analyses, enhanced annihilation of oxygen vacancies triggers polymorphic transformation in ZrO2 near the metal stain, while the overall Al2O3 lattice tends to dehydroxylate by forming oxygen vacancies. A mechanism for chemically driven "reactive metastability" is suggested, which results in accelerating the polymorphic transformation. The Al2O3 matrix is found to play a key-role in the ZrO2 transformation process, with unambiguous confirmation of oxygen and hydrogen transport at the material surface. It is postulated that this transport is mediated by migration of dissociated O and H elements at the surface of the stained transition metal as they become readily available by the thermally activated surrounding.


Asunto(s)
Óxido de Aluminio , Prótesis de Cadera , Modelos Biológicos , Modelos Químicos , Circonio , Óxido de Aluminio/química , Óxido de Aluminio/farmacocinética , Óxido de Aluminio/farmacología , Humanos , Cinética , Circonio/química , Circonio/farmacocinética , Circonio/farmacología
16.
Mater Sci Eng C Mater Biol Appl ; 72: 252-258, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28024583

RESUMEN

Exploitation of the toughening effect induced by polymorphic phase transformation of zirconia in zirconia-toughened alumina (ZTA) requires the composite being properly designed and carefully manufactured. A sound algorithm for predicting phase stability along with strict control over manufacturing steps are required in order to prevent possible in vivo surface degradation or implant fracture. This paper is the first in a series of three monographs, which aim at: (i) statistically comparing the in vitro/in vivo phenomenology of surface-metastability for currently marketed ZTA femoral heads; (ii) refining pre-existing theoretical models for predicting in vivo zirconia phase metastability via the use of accelerated in vitro ageing experiments; and, (iii) providing a rationale for the mechanism(s) involved with the observed in vivo surface metastability. This initial paper of a series of three, which specifically deals with item (i), shows discrepancies between the levels of polymorphic phase transformation detected in ZTA retrievals and in vitro predictions, and attempts a phenomenological analysis of the reasons behind such discrepancies. Moreover, marked inhomogeneities are also found among as-manufactured components through different years of production. The phenomenology of retrievals' data suggests key roles for both the presence of metallic stain and the initial value of monoclinic volume fraction.


Asunto(s)
Óxido de Aluminio/química , Materiales Biocompatibles/química , Circonio/química , Artroplastia de Reemplazo de Cadera , Materiales Biocompatibles/uso terapéutico , Cabeza Femoral/química , Fracturas Óseas/terapia , Prótesis de Cadera , Humanos , Cinética , Microscopía Confocal , Diseño de Prótesis , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA