RESUMEN
Non-invasive deep brain stimulation using transcranial magnetic stimulation is a promising technique for treating several neurological disorders, such as Alzheimer's and Parkinson's diseases. However, the currently used coils do not demonstrate the required stimulation performance in deep regions of the brain, such as the hippocampus, due to the rapid decay of the field inside the head. This study proposes an array that uses the cone coil method for deep stimulation. This study investigates the impact of magnetic core and shielding on field strength, focality, decay rate, and safety. The coil's size and shape effects on the electric field distribution in deep brain areas are also examined. The finite element method is used to calculate the induced electric field in a realistic human head model. The simulation results indicate that the magnetic core and shielding increase the electric field intensity and enhance focality but do not improve the field decay rate. However, the decay rate can be reduced by increasing the coil size at the expense of focality. By adopting an optimum cone structure, the proposed five-coil array reduces the electric field attenuation rate to reach the stimulation threshold in deep regions while keeping all other regions within safety limits. In vitro and in vivo experimental results using a head phantom and a dead pig's head validate the simulated results and confirm that the proposed design is a reliable and efficient candidate for non-invasive deep brain magnetic stimulation.
Asunto(s)
Encéfalo , Enfermedad de Parkinson , Humanos , Simulación por Computador , Electricidad , Fantasmas de ImagenRESUMEN
In the current study, nanosecond pulsed electric field (nsPEF) was investigated at lab-scale to optimise processing conditions of donor human milk to reduce bacterial counts, and to evaluate its effect on the bioactive proteins in human milk. Response surface methodology was utilized to optimise critical processing parameters. Two optimal nsPEF processing conditions were validated: 15 kV voltage, 6000 pulses at 20 Hz frequency, and 15 kV voltage, 6000 pulses at 50 Hz frequency. Compared to raw human milk, nsPEF processed milk had over 60 % retention of lysozyme, lactoperoxidase and lactoferrin, and 100 % retention of xanthine oxidase and immunoglobulin A. The contents of the five proteins were significantly higher after nsPEF processing when compared with Holder pasteurization. Liquid chromatography-mass spectrometry analysis showed that loss of milk proteins was smaller for samples treated with nsPEF than Holder pasteurization. These results indicated that nsPEF is a promising novel pasteurization method.
Asunto(s)
Leche Humana , Proteoma , Humanos , Suero Lácteo , Proteínas de la Leche , Pasteurización , Proteína de Suero de LecheRESUMEN
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are highly recalcitrant anthropogenic chemicals that are ubiquitously present in the environment and are harmful to humans. Typical water and wastewater treatment processes (coagulation, flocculation, sedimentation, and filtration) are proven to be largely ineffective, while adsorption with granular activated carbon (GAC) has been the chief option to capture them from aqueous sources followed by incineration. However, this process is time-consuming, and produces additional solid waste and air pollution. Treatment methods for PFOS and PFOA generally follow two routes: (1) removal from source and reduce the risk; (2) degradation. Emerging technologies focusing on degradation are critically reviewed in this contribution. Various processes such as bioremediation, electrocoagulation, foam fractionation, sonolysis, photocatalysis, mechanochemical, electrochemical degradation, beams of electron and plasma have been developed and studied in the past decade to address PFAS crisis. The underlying mechanisms of these PFAS degradation methods have been categorized. Two main challenges have been identified, namely complexity in large scale operation and the release of toxic byproducts. Based on the literature survey, we have provided a strength-weakness-opportunity-threat (SWOT) analysis and quantitative rating on their efficiency, environmental impact and technology readiness.
Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Caprilatos , Fluorocarburos/análisis , Humanos , Agua , Contaminantes Químicos del Agua/análisisRESUMEN
Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric transducer impedance has been discussed in different literatures, the trend of the nonlinearity at different frequencies with respect to excitation voltage variations has not been clearly investigated in practice. In this paper, to demonstrate how the nonlinearity behaves, a sandwich piezoceramic transducer was excited at different frequencies. Different excitation signals were generated using a linear power amplifier and a multilevel converter within a range of 30-200V. Empirical relation was developed to express the resistance of the piezoelectric transducer as a nonlinear function of both excitation voltage and resonance frequency. The impedance measurements revealed that at higher voltage ranges, the piezoelectric transducer can be easily saturated. Also, it was shown that for the developed ultrasound system composed of two transducers (one transmitter and one receiver), the output voltage measured across receiver is a function of a voltage across the resistor in the RLC branches and is related to the resonance frequencies of the ultrasound transducer.
RESUMEN
High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electric field at 500 V and 10 kHz through capacitive coupling method was safe and did not destroy the bone tissue construction.