Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Control Release ; 371: 158-178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782062

RESUMEN

Glycosylated nanoplatforms have emerged as promising tools in the field of cancer theranostics, integrating both therapeutic and diagnostic functionalities. These nanoscale platforms are composed of different materials such as lipids, polymers, carbons, and metals that can be modified with glycosyl moieties to enhance their targeting capabilities towards cancer cells. This review provides an overview of different modification strategies employed to introduce glycosylation onto nanoplatforms, including chemical conjugation, enzymatic methods, and bio-orthogonal reactions. Furthermore, the potential applications of glycosylated nanoplatforms in cancer theranostics are discussed, focusing on their roles in drug delivery, imaging, and combination therapy. The ability of these nanoplatforms to selectively target cancer cells through specific interactions with overexpressed glycan receptors is highlighted, emphasizing their potential for enhancing efficacy and reducing the side effects compared to conventional therapies. In addition, the incorporation of diagnostic components onto the glycosylated nanoplatforms provided the capability of simultaneous imaging and therapy and facilitated the real-time monitoring of treatment response. Finally, challenges and future perspectives in the development and translation of glycosylated nanoplatforms for clinical applications are addressed, including scalability, biocompatibility, and regulatory considerations. Overall, this review underscores the significant progress made in the field of glycosylated nanoplatforms and their potential to revolutionize cancer theranostics.


Asunto(s)
Neoplasias , Nanomedicina Teranóstica , Humanos , Glicosilación , Neoplasias/terapia , Neoplasias/diagnóstico , Neoplasias/metabolismo , Nanomedicina Teranóstica/métodos , Animales , Sistemas de Liberación de Medicamentos , Nanopartículas , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico
2.
Phys Chem Chem Phys ; 26(23): 16407-16437, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38807475

RESUMEN

As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.


Asunto(s)
Oro , Nanopartículas del Metal , Plata , Azufre , Oro/química , Plata/química , Nanopartículas del Metal/química , Azufre/química , Humanos , Nanomedicina Teranóstica , Materiales Biocompatibles/química , Animales , Compuestos de Sulfhidrilo/química , Nanoestructuras/química
3.
Talanta ; 275: 126099, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640517

RESUMEN

Tuberculosis (TB) is one of the major killer diseases affecting lung parenchymal tissues. Mycobacterium tuberculosis (Mtb) is the bacterium that causes it. It most commonly affects the lungs, although it can affect any part of the body, including the stomach, glands, bones, and nervous system. Although anti-mycobacterial drugs are available, it remains a major threat to public health due to the rise of drug-resistant strains, and early and accurate diagnosis is very important. Currently, research science and medical communities are focusing on the use of cost-effective biosensors to manage human biological processes and assess accurate health diagnostics. Due to their high sensitivity in chemical and biological assays, nanomaterials have been considered in the field of biosensors for better diagnosis, and among them, gold nanoparticles (AuNPs) can play an important role in accelerating the diagnosis of TB. Superior biocompatibility, conductivity, catalytic properties, high surface-to-volume ratio, and high density enable their widespread use in the fabrication of biosensors. This review evaluates the diagnostic accuracy of AuNP-based biosensors for the detection of Mtb. According to different transducers of biosensors, their structure, performance, advantages and limitations are summarized and compared. Moreover, the upcoming challenges in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed.


Asunto(s)
Técnicas Biosensibles , Oro , Nanopartículas del Metal , Mycobacterium tuberculosis , Tuberculosis , Oro/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Humanos , Tuberculosis/diagnóstico , Mycobacterium tuberculosis/aislamiento & purificación
4.
Cell Commun Signal ; 22(1): 126, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360719

RESUMEN

Extensive research in countries with high sociodemographic indices (SDIs) to date has shown that coronavirus disease 2019 (COVID-19) may be directly associated with more severe outcomes among patients living with haematological disorders and malignancies (HDMs). Because individuals with moderate to severe immunodeficiency are likely to undergo persistent infections, shed virus particles for prolonged periods, and lack an inflammatory or abortive phase, this represents an overall risk of morbidity and mortality from COVID-19. In cases suffering from HDMs, further investigation is needed to achieve a better understanding of triviruses and a group of related variants in patients with anemia and HDMs, as well as their treatment through vaccines, drugs, and other methods. Against this background, the present study aimed to delineate the relationship between HDMs and the novel COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Besides, effective treatment options for HDM cases were further explored to address this epidemic and its variants. Therefore, learning about how COVID-19 manifests in these patients, along with exploiting the most appropriate treatments, may lead to the development of treatment and care strategies by clinicians and researchers to help patients recover faster. Video Abstract.


Asunto(s)
Anemia , COVID-19 , Neoplasias Hematológicas , Humanos , SARS-CoV-2 , Neoplasias Hematológicas/complicaciones , Neoplasias Hematológicas/epidemiología , Neoplasias Hematológicas/terapia , Factores de Riesgo , Anemia/complicaciones , Anemia/epidemiología , Anemia/terapia
5.
Nanoscale Adv ; 6(2): 337-366, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38235087

RESUMEN

Mechanical properties, such as elasticity modulus, tensile strength, elongation, hardness, density, creep, toughness, brittleness, durability, stiffness, creep rupture, corrosion and wear, a low coefficient of thermal expansion, and fatigue limit, are some of the most important features of a biomaterial in tissue engineering applications. Furthermore, the scaffolds used in tissue engineering must exhibit mechanical and biological behaviour close to the target tissue. Thus, a variety of materials has been studied for enhancing the mechanical performance of composites. Carbon-based nanostructures, such as graphene oxide (GO), reduced graphene oxide (rGO), carbon nanotubes (CNTs), fibrous carbon nanostructures, and nanodiamonds (NDs), have shown great potential for this purpose. This is owing to their biocompatibility, high chemical and physical stability, ease of functionalization, and numerous surface functional groups with the capability to form covalent bonds and electrostatic interactions with other components in the composite, thus significantly enhancing their mechanical properties. Considering the outstanding capabilities of carbon nanostructures in enhancing the mechanical properties of biocomposites and increasing their applicability in tissue engineering and the lack of comprehensive studies on their biosafety and role in increasing the mechanical behaviour of scaffolds, a comprehensive review on carbon nanostructures is provided in this study.

6.
MedComm (2020) ; 4(6): e386, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37873514

RESUMEN

Contact dermatitis (CD) is an inflammatory skin disease of eczema that is elicited by chemicals or metal ions that have toxic effects without eliciting a T-cell response (contact elicitation) or by small reactive chemicals that modify proteins and induce innate and adaptive immune responses (contact allergens). The clinical condition is characterized by localized skin rash, pruritus, redness, swelling, and lesions, which are mainly detected by patch tests and lymphocyte stimulation. Heavy metals such as palladium (Pd), platinum (Pt), and titanium (Ti) are ubiquitous in our environment. These heavy metals have shown CD effects as allergic agents. Immunological responses result from the interaction of cytokines and T cells. Occupational metal CD accounts for most cases of work-related cutaneous disorders. In this systematic review, the allergic effects of heavy metals, including Pd, Pt, and Ti, and the mechanisms, clinical manifestations, prevalence, and therapeutic approaches are discussed in detail. Furthermore, the therapeutic approaches introduced to treat CD, including corticosteroids, topical calcineurin inhibitors, systemic immunosuppressive agents, phototherapy, and antihistamines, can be effective in the treatment of these diseases in the future. Ultimately, the insights identified could lead to improved therapeutic and diagnostic pathways.

7.
Front Public Health ; 11: 1189861, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37427272

RESUMEN

Background: Estimating and analyzing trends and patterns of health loss are essential to promote efficient resource allocation and improve Peru's healthcare system performance. Methods: Using estimates from the Global Burden of Disease (GBD), Injuries, and Risk Factors Study (2019), we assessed mortality and disability in Peru from 1990 to 2019. We report demographic and epidemiologic trends in terms of population, life expectancy at birth (LE), mortality, incidence, prevalence, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) caused by the major diseases and risk factors in Peru. Finally, we compared Peru with 16 countries in the Latin American (LA) region. Results: The Peruvian population reached 33.9 million inhabitants (49.9% women) in 2019. From 1990 to 2019, LE at birth increased from 69.2 (95% uncertainty interval 67.8-70.3) to 80.3 (77.2-83.2) years. This increase was driven by the decline in under-5 mortality (-80.7%) and mortality from infectious diseases in older age groups (+60 years old). The number of DALYs in 1990 was 9.2 million (8.5-10.1) and reached 7.5 million (6.1-9.0) in 2019. The proportion of DALYs due to non-communicable diseases (NCDs) increased from 38.2% in 1990 to 67.9% in 2019. The all-ages and age-standardized DALYs rates and YLLs rates decreased, but YLDs rates remained constant. In 2019, the leading causes of DALYs were neonatal disorders, lower respiratory infections (LRIs), ischemic heart disease, road injuries, and low back pain. The leading risk factors associated with DALYs in 2019 were undernutrition, high body mass index, high fasting plasma glucose, and air pollution. Before the COVID-19 pandemic, Peru experienced one of the highest LRIs-DALYs rates in the LA region. Conclusion: In the last three decades, Peru experienced significant improvements in LE and child survival and an increase in the burden of NCDs and associated disability. The Peruvian healthcare system must be redesigned to respond to this epidemiological transition. The new design should aim to reduce premature deaths and maintain healthy longevity, focusing on effective coverage and treatment of NCDs and reducing and managing the related disability.


Asunto(s)
COVID-19 , Enfermedades no Transmisibles , Infecciones del Sistema Respiratorio , Anciano , Femenino , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , COVID-19/epidemiología , Esperanza de Vida , Pandemias , Perú/epidemiología , Años de Vida Ajustados por Calidad de Vida , Lactante , Preescolar
8.
J Trace Elem Med Biol ; 79: 127240, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37331278

RESUMEN

Contact dermatitis is an inflammatory skin reaction caused by direct contact with chemical substances in the environment and can either be irritant or allergic in nature. The clinical symptoms of contact dermatitis, include local skin rash, itching, redness, swelling, and lesions. Nowadays, 15-20% of people have some degree of contact dermatitis, which can be more or less severe. Immune responses in allergic contact dermatitis (ACD) are due to the effects of cytokines and allergen-specific CD4+ and CD8+ T cells on the skin. Acids and alkalis such as drain cleaners, plants such as poinsettias, hair colors, and nail polish remover, are all prominent causes of irritant contact dermatitis (ICDs). Heavy metals are metallic elements with a high atomic weight that are hazardous in low quantities and are known to cause dermatitis after systemic or local exposure. Nickel (Ni), chromium (Cr), lead (Pb), and copper (Cu) are among the most common heavy metals used in various industries. Metal allergies may cause ACD and also systemic contact dermatitis (SCD). Contact dermatitis is detected by laboratory tests such as patch testing, lymphocyte stimulation test (LST), and evaluation of cytokine production by primary cultures of peripheral blood mononuclear cells. This article presents an update on the epidemiological and clinical characteristics of ACD and SCD caused by three heavy metals (Cr, Cu, and Pb). Ni is not discussed due to recent coverage. Furthermore, the effects of contact sensitivity to some other heavy metals, such as gold (Au), cobalt (Co), palladium (Pd), and mercury (Hg) are discussed.


Asunto(s)
Dermatitis Alérgica por Contacto , Mercurio , Metales Pesados , Humanos , Irritantes , Linfocitos T CD8-positivos , Plomo , Leucocitos Mononucleares , Metales Pesados/toxicidad , Dermatitis Alérgica por Contacto/etiología , Dermatitis Alérgica por Contacto/diagnóstico , Níquel , Cromo , Mercurio/toxicidad
9.
Nanoscale ; 15(26): 10882-10903, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37337663

RESUMEN

As an efficient class of hydrogel-based therapeutic drug delivery systems, deoxyribonucleic acid (DNA) hydrogels (particularly DNA nanogels) have attracted massive attention in the last five years. The main contributor to this is the programmability of these 3-dimensional (3D) scaffolds that creates fundamental effects, especially in treating cancer diseases. Like other active biological ingredients (ABIs), DNA hydrogels can be functionalized with other active agents that play a role in targeting drug delivery and modifying the half-life of the therapeutic cargoes in the body's internal environment. Considering the brilliant advantages of DNA hydrogels, in this survey, we intend to submit an informative collection of feasible methods for the design and preparation of DNA hydrogels and nanogels, and the responsivity of the immune system to these therapeutic cargoes. Moreover, the interactions of DNA hydrogels with cancer biomarkers are discussed in this account. Theragnostic DNA nanogels as an advanced species for both detection and therapeutic purposes are also briefly reviewed.


Asunto(s)
Hidrogeles , Neoplasias , Humanos , Nanogeles , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , ADN
10.
Cell Commun Signal ; 21(1): 110, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189112

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Tratamiento Farmacológico de COVID-19 , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica
11.
ISA Trans ; 138: 212-225, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37031030

RESUMEN

This paper proposes an active fault-tolerant control (FTC) approach based on the controller management and virtual actuator idea for linear discrete-time systems subject to unknown L2-bounded disturbances, input constraint, and time-varying additive actuator faults. The closed-loop faulty system, which includes the modified nominal controller, the fault and state estimator, and the virtual actuator, suppresses the effects of disturbances and faults, while ensuring input-constraint satisfaction. The management of the nominal controller is performed through an online optimization method - in the form of a standard quadratic programming problem - by manipulating the reference input and intervening in the nominal controller evolution. The proposed method proves the input-to-state stability (ISS) criterion of the overall closed-loop faulty system. The problem of minimizing the ultimate bound of the ISS criterion is formulated in terms of tractable linear matrix inequality (LMI) conditions that allow the fault and state estimation errors to converge to a small neighborhood of the origin. To illustrate the capabilities and advantages of the proposed control strategy, comparative simulation results are presented for a flexible joint robotic system, tracking control of a DC motor's angular velocity, and the multivariable VTOL aircraft.

12.
Environ Res ; 227: 115705, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958383

RESUMEN

Alzheimer's disease, a progressive neurological condition, is associated with various internal and external risk factors in the disease's early stages. Early diagnosis of Alzheimer's disease is essential for treatment management. Circulating exosomal microRNAs could be a new class of valuable biomarkers for early Alzheimer's disease diagnosis. Different kinds of biosensors have been introduced in recent years for the detection of these valuable biomarkers. Isolation of the exosomes is a crucial step in the detection process which is traditionally carried out by multi-step ultrafiltration. Microfluidics has improved the efficiency and costs of exosome isolation by implementing various effects and forces on the nano and microparticles in the microchannels. This paper reviews recent advancements in detecting Alzheimer's disease related exosomal microRNAs based on methods such as electrochemical, fluorescent, and SPR. The presented devices' pros and cons and their efficiencies compared with the gold standard methods are reported. Moreover, the application of microfluidic devices to detect Alzheimer's disease related biomarkers is summarized and presented. Finally, some challenges with the performance of novel technologies for isolating and detecting exosomal microRNAs are addressed.


Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , Exosomas , MicroARNs , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Biomarcadores , Exosomas/genética
13.
Biosens Bioelectron ; 225: 115100, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709589

RESUMEN

Because of the brain's complexity, developing effective treatments for neurological disorders is a formidable challenge. Research efforts to this end are advancing as in vitro systems have reached the point that they can imitate critical components of the brain's structure and function. Brain-on-a-chip (BoC) was first used for microfluidics-based systems with small synthetic tissues but has expanded recently to include in vitro simulation of the central nervous system (CNS). Defining the system's qualifying parameters may improve the BoC for the next generation of in vitro platforms. These parameters show how well a given platform solves the problems unique to in vitro CNS modeling (like recreating the brain's microenvironment and including essential parts like the blood-brain barrier (BBB)) and how much more value it offers than traditional cell culture systems. This review provides an overview of the practical concerns of creating and deploying BoC systems and elaborates on how these technologies might be used. Not only how advanced biosensing technologies could be integrated with BoC system but also how novel approaches will automate assays and improve point-of-care (PoC) diagnostics and accurate quantitative analyses are discussed. Key challenges providing opportunities for clinical translation of BoC in neurodegenerative disorders are also addressed.


Asunto(s)
Técnicas Biosensibles , Encéfalo , Barrera Hematoencefálica , Microfluídica , Dispositivos Laboratorio en un Chip
14.
Chem Soc Rev ; 51(7): 2601-2680, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35234776

RESUMEN

Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.


Asunto(s)
Nanoestructuras , Neurociencias , Oro , Nanoestructuras/uso terapéutico , Nanotecnología , Ingeniería de Tejidos
15.
Artículo en Inglés | MEDLINE | ID: mdl-31724330

RESUMEN

Protein-protected metal nanoclusters (MNCs), typically consisting of several to a hundred metal atoms with a protein outer layer used for protecting clusters from aggregation, are excellent fluorescent labels for biomedical applications due to their extraordinary photoluminescence, facile synthesis and good biocompatibility. Interestingly, many protein-protected MNCs have also been reported to exhibit intrinsic enzyme-like activities, namely peroxidase, oxidase and catalase activities, and are consequently used for biological analysis and environmental treatment. These findings have extended the horizon of protein-protected MNCs' properties as well as their application in various fields. Furthermore, in the field of nanozymes, protein-protected MNCs have emerged as an outstanding new addition. Due to their ultra-small size (<2 nm), they usually have higher catalytic activity, more suitable size for in vivo application, better biocompatibility and photoluminescence in comparison with large size nanozymes. In this review, we will systematically introduce the significant advances in this field and critically discuss the challenges that lie ahead. Ultra-small nanozymes based on protein-protected MNCs are on the verge of attracting great interest across various disciplines and will stimulate research in the fields of nanotechnology and biology. This article is characterized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Asunto(s)
Enzimas/metabolismo , Metales/química , Nanoestructuras/química , Proteínas/química , Animales , Humanos , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...