Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082745

RESUMEN

BACKGROUND: Chia (Salvia hispanica L.) seeds have become increasingly popular among health-conscious consumers due to their high content of ω-3 fatty acids, which provide various health benefits. Comprehensive chemical analyses of chia seeds' fatty acids and proteins have been conducted, revealing their functional properties. Recent studies have confirmed the high ω-3 content of chia seed oil and have hinted at additional functional characteristics. SCOPE: This review article aims to provide an overview of the botanical, morphological, and biochemical features of chia plants, seeds, and seed mucilage. Additionally, we discuss the recent developments in genetic and molecular research on chia, including the latest transcriptomic and functional studies that examine the genes responsible for chia fatty acid biosynthesis. In recent years, research on chia seeds has shifted its focus from studying the physicochemical characteristics and chemical composition of seeds to understanding the metabolic pathways and molecular mechanisms that contribute to their nutritional benefits. This has led to a growing interest in various pharmaceutical, nutraceutical, and agricultural applications of chia. In this context, we discuss the latest research on chia, as well as the questions that remain unanswered, and identify areas that require further exploration. CONCLUSIONS: Nutraceutical compounds associated with significant health benefits including ω-3 PUFAs, proteins, and phenolic compounds with antioxidant activity have been measured in high quantities in chia seeds. However, comprehensive investigations through both in vitro experiments and in vivo animal and controlled human trials are expected to provide greater clarity on the medicinal, antimicrobial, and antifungal effects of chia seeds. The recently published genome of chia and gene editing technologies, such as CRISPR, facilitate functional studies deciphering molecular mechanisms of biosynthesis and metabolic pathways in this crop. This necessitates development of stable transformation protocols and creation of a publicly available lipid database, mutant collection, and large-scale transcriptomic datasets for chia.

2.
Plant Genome ; 17(1): e20430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38339968

RESUMEN

Salvia hispanica L. (chia) is a source of abundant ω-3 polyunsaturated fatty acids (ω-3-PUFAs) that are highly beneficial to human health. The genomic basis for this accrued ω-3-PUFA content in this emerging crop was investigated through the assembly and comparative analysis of a chromosome-level reference genome for S. hispanica. The highly contiguous 321.5-Mbp genome assembly covering all six chromosomes enabled the identification of 32,922 protein-coding genes. Two whole-genome duplications (WGD) events were identified in the S. hispanica lineage. However, these WGD events could not be linked to the high α-linolenic acid (ALA, ω-3) accumulation in S. hispanica seeds based on phylogenomics. Instead, our analysis supports the hypothesis that evolutionary expansion through tandem duplications of specific lipid gene families, particularly the stearoyl-acyl carrier protein desaturase (ShSAD) gene family, is the main driver of the abundance of ω-3-PUFAs in S. hispanica seeds. The insights gained from the genomic analysis of S. hispanica will help establish a molecular breeding target that can be leveraged through genome editing techniques to increase ω-3 content in oil crops.


Asunto(s)
Ácidos Grasos Omega-3 , Humanos , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/metabolismo , Familia de Multigenes , Semillas/metabolismo , Genómica
3.
Curr Protoc ; 3(8): e876, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37638775

RESUMEN

The dawn of cost-effective genome assembly is enabling deep comparative genomics to address fundamental evolutionary questions by comparing the genomes of multiple species. However, comparative genomics analyses frequently deploy multiple, often purpose-built frameworks, limiting their transferability and replicability. Here, we present compare_genomes, a transferable and extensible comparative genomics workflow package we developed that streamlines the identification of orthologous families within and across eukaryotic genomes and tests for the presence of several mechanisms of evolution (gene family expansion or contraction and substitution rates within protein-coding sequences). The workflow is available for Linux, written as a Nextflow workflow that calls established genomics and phylogenetics tools to streamline the analysis and visualization of eukaryotic genome divergence. This workflow is freely available at https://github.com/jeffersonfparil/compare_genomes, distributed under the GNU General Public License version 3 (GPLv3). © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Comparative genomics with Nextflow and Conda.


Asunto(s)
Eucariontes , Genómica , Programas Informáticos , Flujo de Trabajo , Genómica/métodos , Eucariontes/clasificación , Eucariontes/genética , Evolución Biológica
4.
Food Res Int ; 126: 108665, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31732052

RESUMEN

Despite recent studies on health benefits of chia seed owing to its high content of ω-3 fatty acids, little work has been conducted on extractability of its nutrients. We examined the effect of soaking chia seed in water on the extractability of its omega fatty acids and lipids. State-of-the-art mass spectrometry techniques including GC-MS, LC-MS, and MALDI-MSI were utilized to identify and determine the spatial distribution of omega fatty acids and lipids in chia seed. Results showed that 24 h soaking in water improves the extractability of omega fatty acids and the ω-6:ω-3 ratio. Increase in the release levels of triacylglycerols and diacylglycerols and reduction in the release levels of phosphatidylcholines are envisaged to be the result of cell wall weakening and consequently availability of lipids for extraction. Results of MALDI-MSI show that highly abundant lipid species are mainly localised in the chia seed endosperm rather than its mucilage.


Asunto(s)
Ácidos Grasos Omega-3 , Ácidos Grasos Omega-6 , Salvia/química , Semillas/química , Cromatografía Líquida de Alta Presión , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/análisis , Ácidos Grasos Omega-6/química , Ácidos Grasos Omega-6/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Lípidos , Metabolómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...