Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Stress Chaperones ; 29(4): 552-566, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909654

RESUMEN

Heat shock proteins (HSPs) play a crucial role in antioxidant systems, immune responses, and enzyme activation during stress conditions. Salinity changes can cause stress and energy expenditure in fish, resulting in mortality, especially in fingerlings. The purpose of this study was to examine the relationship between salinity and HSPs in stressed fish by assessing the effects of various HSP inducers (HSPis), including Pro-Tex® (800 mM), amygdalin (80 mM), and a novel synthetic compound derived from pirano piranazole (80 µM), on isolated cells from Sterlet Sturgeon (Acipenser ruthenus) exposed to 13 ‰ salinity (S13). After liver, kidney, and gill cells were cultured, the HSPi compounds were treated in vitro in the presence and absence of salinity. The expression patterns of HSP27, HSP70, and HSP90 were assessed by Western blotting. Biochemical enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase), cortisol levels, and immune parameters (component 3, immunoglobulin M, and lysozyme) were measured before and after treatment with HSPis and HSPi + S13. According to these findings, HSPis positively modulate HSP expression, immune responses, and antioxidant levels. Furthermore, they increased in vitro cell survival by maintaining cortisol levels and biochemical enzyme activities in A. ruthenus under saline conditions (P < 0.0001). In conclusion, HSPis can increase A. ruthenus resistance to salinity stress. However, the results also indicated that these compounds can reverse the adverse effects of salinity. The effectiveness of this approach depends on further research into the effects of these ecological factors on the health status of the species, especially in vivo and in combination with other stresses.

2.
Fish Physiol Biochem ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658492

RESUMEN

Global warming has profound effects on the living conditions and metabolism of organisms, including fish. The metabolic rate of fish increases as the temperature increases within its thermal tolerance range. Temperature changes can trigger a range of physiological reactions, including the activation of the stress axis and the production of HSPs. Under stress conditions, HSPs play a crucial role in antioxidant systems, immune responses, and enzyme activation. This study examined the effects of heat shock products (HSPs) on fish under temperature stress. Various HSP inducers (HSPis), including Pro-Tex®, amygdalin, and novel synthetic compounds derived from pirano piranazole (SZ, MZ, HN-P1, and HN-P2), were evaluated in isolated cells of sterlet sturgeon (Acipenser ruthenus) treated with temperature changes (18, 22, and 26 °C). Cells from the liver, kidney, and gills were cultured in vitro in the presence and absence of temperature stress and treated with HSPi compounds. To assess HSP27, HSP70, and HSP90 expression patterns, Western blotting was used. The HSPis and HSPi + temperature stress treatments affected the antioxidant capacity and immune parameters, among other enzyme activities. The results showed that HSPi compounds increase cell survival in vitro, positively modulate HSP expression and antioxidant levels, and decrease immune parameters. HSPi can increase A. ruthenus tolerance to temperature stress. In addition, the results indicate that these compounds can reverse adverse temperature effects. Further research is needed to determine how these ecological factors affect fish species' health in vivo and in combination with other stressors.

3.
Environ Sci Pollut Res Int ; 31(6): 9445-9460, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191735

RESUMEN

The Caspian Sea has faced many environmental challenges, such as oil pollution. Heat shock proteins (HSPs) play a critical role in stress conditions and physiological changes caused by disease or injury. By evaluating the effects of various HSP inducers (HSPi), including Pro-Tex® (NOP: 800 mM), amygdalin (AMG: 80 mM), and a novel synthetic compound derived from pirano piranazole (SZ: 80 µm) on isolated cells from Sterlet Sturgeon (Acipenser ruthenus) treated with 75% IC50 PAH-benzo[a]pyrene (BaP; B75). This study examines whether there is a correlation between exposure to the BaP pollutant and HSPs in fish. In vitro, after culturing cells from the liver, kidney, and gills, they were treated with HSPi compounds in the presence and absence of BaP. Western blotting was used to assess HSP27, HSP70, and HSP90 expression patterns. A variety of enzyme activities were measured before (without treatment) and after treatment with HSPis and HSPi + B75, including cytochrome P450 (CYP450) activity, specific enzyme activity for acetylcholinesterase (AChE), antioxidant capacity, liver indicator enzymes, cortisol levels, and immunity parameters. When compared to the control group, cells treated with B75 showed the lowest AChE enzyme activity (p < 0.0001). CYP450 activity was highest in group B75, while HSPi caused the opposite effect (p < 0.0001). HSPi + B75 increased HSP levels and antioxidant parameters while decreasing cortisol and liver indicator enzymes (p < 0.0001). HSPi may be a powerful and reliable method for enhancing the resistance of A. ruthenus to BaP stresses before exposure. Treating cells with HSP-inducing compounds, such as NOP, AMG, and SZ, can assist them in managing stress and increase HSP (27, 70, and 90) protein expression. Furthermore, the study findings suggest that HSPis can also mitigate the adverse effects of stress, ultimately increasing cell survival and resistance.


Asunto(s)
Benzo(a)pireno , Branquias , Animales , Benzo(a)pireno/farmacología , Benzo(a)pireno/metabolismo , Antioxidantes/metabolismo , Supervivencia Celular , Acetilcolinesterasa/metabolismo , Hidrocortisona , Hígado , Proteínas de Choque Térmico/metabolismo , Riñón
4.
J Hazard Mater ; 465: 133194, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38086298

RESUMEN

Diazinon (DZN) is an organophosphate pesticide frequently used in agriculture and released into aquatic environments. In this study, sterlet sturgeon cells were exposed to DZN to investigate possible defense mechanisms via HSP induction (HSPi). Liver, kidney, and gill cells of Acipenser ruthenus were isolated and cultured and then treated with HSPi (Pro-Tex®, amygdalin, and a novel pirano-piranazole-based synthesized compound: SZ) in the presence and absence of DZN. MTT assays were used to evaluate the effects of different HSPis and their combinations with DZN. Western blotting analysis was conducted to evaluate HSP27, HSP70, and HSP90 expression patterns in each group. The highest rates of caspase-3 and caspase-8 activities were found in the DZN group, whereas HSPi treatment resulted in the lowest rates. The combination of HSPi+DZN resulted in increased HSP levels and antioxidant parameters but decreased cortisol, immune parameters, and metabolic enzymes. Many of the studied parameters (caspases, acetylcholinesterase, antioxidant, immune, and metabolic parameters) showed significant correlations with HSP expression, indicating that HSPs may be associated with markers of sterlet cell health. The results of this study demonstrate that using HSP inducers may be a powerful and reliable way to increase A. ruthenus resistance prior to exposure to DZN.


Asunto(s)
Diazinón , Insecticidas , Diazinón/toxicidad , Antioxidantes/farmacología , Acetilcolinesterasa , Insecticidas/toxicidad , Sustancias Peligrosas , Proteínas de Choque Térmico
5.
PLoS One ; 18(11): e0294188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37956191

RESUMEN

Aquatic environments face frequent exposure to organophosphate pesticides, such as diazinon, which are frequently utilized in agriculture. The goal of this study was to evaluate the effects of diazinon exposure on fish and to investigate the potential of the HSP inducer (HSPi) in developing a defense mechanism. To achieve this, several factors were analyzed, including the HSP70 gene expression, levels of immunity markers (lysozyme, IgM, and C3), antioxidant status, and the activity of acetylcholine esterase (AChE). Stellate sturgeon (Acipenser stellatus) fry, was exposed to diazinon (25, 50, and 75% of 96h-LC50) for 6 days after pre-treatment with an HSP inducer (HSPi), TEX-OE® (a prickly pear cactus extract), for 4 hours. Two HSPi concentrations, 100 and 200 mg.L-1, were used. Pre-treatment with HSPi significantly enhanced HSP70 gene expression in the gill and liver, as well as immune markers in the blood of Acipenser stellatus. Diazinon-treated groups exhibited higher antioxidant activities of SOD, CAT, and T-AOC. Increased activity also observed in control fish pre-treated with HSPi. However, stellate sturgeon receiving both diazinon and HSPi+diazinon experienced a significant decrease in AChE activity in comparison with control group. Cortisol levels were elevated in the fish that were subjected to diazinon. Those subjected to diazinon after receiving HSPi showed a significant decrease in cortisol levels. In conclusion, the study suggests that HSPi-mediated HSP70 induction may have a protective effect. The presence of an HSP inducer offers a potential strategy to mitigate the consequences of diazinon exposure in stellate sturgeon.


Asunto(s)
Antioxidantes , Diazinón , Animales , Diazinón/toxicidad , Diazinón/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Hidrocortisona/metabolismo , Peces/fisiología , Inmunidad , Expresión Génica
6.
Mar Environ Res ; 191: 106145, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37595360

RESUMEN

Changes in salinity is a stressful and energy-consuming process in fish which give rise to mortalities, especially in fish fingerlings that are more sensitive during the early stages of their life. In the present study, the effects of three salinities, 3‰ (downstream of river), 8‰ (estuarine), and 13‰ (the maximum salinity in the Caspian Sea), on HSP70 gene expression, cortisol level, immune response (lysozyme, complement C3, IgM), and antioxidant enzyme activities (SOD, CAT, T-AOC) of the stellate sturgeon fingerlings in the presence of HSP inducer compound (TEX-OE®) were evaluated. Our results showed that levels of plasma cortisol and heat shock protein (HSP70) in Acipenser stellatus fingerlings increased due to salinity changes. In the presence of the HSP inducer, HSP70 expression in both gill and liver was significantly increased, whereas cortisol level was notably decreased. Exposure to salinity changes resulted in an increase in antioxidant defense activities (SOD, CAT, and T-AOC) and immune response (lysozyme, IgM, and C3) in the presence of an HSP inducer. In conclusion, an HSP-inducing compounds can have a positive effect in strengthening the immunity and antioxidant system of sturgeon fingerlings by increasing the expression of the HSP70 gene against salinity fluctuations and generally increase the body's physiological tolerance.


Asunto(s)
Muramidasa , Salinidad , Animales , Muramidasa/metabolismo , Antioxidantes , Hidrocortisona/metabolismo , Peces/fisiología , Superóxido Dismutasa/metabolismo , Inmunoglobulina M/metabolismo
7.
Int J Biol Macromol ; 164: 3369-3375, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32861782

RESUMEN

The present study aims to evaluate the inhibitory effects of artesunate (a semi-synthetic derivative of artemisinin) on HSP70 and Bcl-2 expression in two breast cancer cell lines, 4T1 and MCF-7. In addition, to determine in vitro inhibitory effect of artesunate against the ATPase activity of purified recombinant HSP70, it was tested in a carbonic anhydrase refolding assay with purified HSP70. Our results demonstrated that the artesunate not only induced apoptosis but also lead to the inhibition of HSP70 ATPase activity the in vitro (P < 0.001). The extent of HSP70 refolding inhibition increased with increasing µM concentrations of artesunate. Incubation of HSP70 with 50 µM artesunate showed significant inhibition of refolding activity by 38%. The IC50 values of artesunate for 4T1 cells, were lower than MCF-7 cells, indicating the higher sensitivity of the triple-negative phenotype. Furthermore, artesunate significantly down-regulated the expression of Bcl-2 and HSP70 while enhancing the expression of cleaved caspase-9 in MCF-7 and 4T1 cells. It also induced caspase-9 activity at 18 h in a dose-dependent manner in two breast cancer cell lines. Generally, our results show that the artesunate induces caspase-dependent apoptosis through the inhibition of HSP70 expression.


Asunto(s)
Artesunato/farmacología , Neoplasias de la Mama/metabolismo , Proteínas HSP70 de Choque Térmico/efectos de los fármacos , Adenosina Trifosfatasas/metabolismo , Apoptosis/efectos de los fármacos , Artesunato/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Femenino , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Proteínas Proto-Oncogénicas c-bcl-2/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...