Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38337947

RESUMEN

Plants may harbor the human pathogen Salmonella enterica. Interactions between S. enterica and different plant species have been studied in individual reports. However, disparities arising from the distinct experimental conditions may render a meaningful comparison very difficult. This study explored interaction patterns between different S. enterica strains including serovars Typhimurium 14028s and LT2 and serovar Senftenberg, and different plants (Arabidopsis, lettuce, and tomato) in one approach. Better persistence of S. enterica serovar Typhimurium strains was observed in all tested plants, whereas the resulting symptoms varied depending on plant species. Genes encoding pathogenesis-related proteins were upregulated in plants inoculated with Salmonella. Furthermore, transcriptome of tomato indicated dynamic responses to Salmonella, with strong and specific responses already 24 h after inoculation. By comparing with publicly accessible Arabidopsis and lettuce transcriptome results generated in a similar manner, constants and variables were displayed. Plants responded to Salmonella with metabolic and physiological adjustments, albeit with variability in reprogrammed orthologues. At the same time, Salmonella adapted to plant leaf-mimicking media with changes in biosynthesis of cellular components and adjusted metabolism. This study provides insights into the Salmonella-plant interaction, allowing for a direct comparison of responses and adaptations in both organisms.

2.
Food Microbiol ; 99: 103833, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119117

RESUMEN

Fruits and vegetables consumed fresh or as minimally-processed produce, have multiple benefits for our diet. Unfortunately, they bring a risk of food-borne diseases, for example salmonellosis. Interactions between Salmonella and crop plants are indeed a raising concern for the global health. Salmonella uses multiple strategies to manipulate the host defense system, including plant's defense responses. The main focus of this review are strategies used by this bacterium during the interaction with crop plants. Emphasis was put on how Salmonella avoids the plant defense responses and successfully colonizes plants. In addition, several factors were reviewed assessing their impact on Salmonella persistence and physiological adaptation to plants and plant-related environment. The understanding of those mechanisms, their regulation and use by the pathogen, while in contact with plants, has significant implication on the growth, harvest and processing steps in plant production system. Consequently, it requires both the authorities and science to advance and definite methods aiming at prevention of crop plants contamination. Thus, minimizing and/or eliminating the potential of human diseases.


Asunto(s)
Plantas/microbiología , Salmonella/crecimiento & desarrollo , Microbiología de Alimentos , Frutas/microbiología , Humanos , Plantas/genética , Plantas/inmunología , Salmonella/genética , Salmonella/aislamiento & purificación , Infecciones por Salmonella/microbiología , Verduras/microbiología
3.
Microorganisms ; 8(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485895

RESUMEN

Minimally processed or fresh fruits and vegetables are unfortunately linked to an increasing number of food-borne diseases, such as salmonellosis. One of the relevant virulence factors during the initial phases of the infection process is the bacterial flagellum. Although its function is well studied in animal systems, contradictory results have been published regarding its role during plant colonization. In this study, we tested the hypothesis that Salmonella's flagellin plays a versatile function during the colonization of tomato plants. We have assessed the persistence in plant tissues of a Salmonella enterica wild type strain, and of a strain lacking the two flagellins, FljB and FliC. We detected no differences between these strains concerning their respective abilities to reach distal, non-inoculated parts of the plant. Analysis of flagellin expression inside the plant, at both the population and single cell levels, shows that the majority of bacteria down-regulate flagellin production, however, a small fraction of the population continues to express flagellin at a very high level inside the plant. This heterogeneous expression of flagellin might be an adaptive strategy to the plant environment. In summary, our study provides new insights on Salmonella adaption to the plant environment through the regulation of flagellin expression.

4.
FEMS Microbiol Ecol ; 95(11)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589309

RESUMEN

Humans and animals are considered typical hosts for Salmonella, however, also plants can be colonized. Tomatoes were linked to salmonellosis outbreaks already on several occasions. The aim of this study was, therefore, to establish a comprehensive view on the interaction between Salmonella enterica and tomatoes, and to test the hypothesis that colonization of plants is an interactive process. We assessed the persistence of Salmonella in agricultural soil, the colonization pattern in and on tomatoes, as well as the reciprocal responses of tomatoes to different Salmonella strains and Salmonella to root exudates and tomato-related media. This study revealed that Salmonella can persist in the soil and inside the tomato plant. Additionally, we show that Salmonella strains have particular colonization pattern, although the persistence inside the plant differs between the tested strains. Furthermore, the transcriptome response of tomato showed an up-regulation of several defense-related genes. Salmonella transcriptome analysis in response to the plant-based media showed differentially regulated genes related to amino acid and fatty acid synthesis and stress response, while the response to root exudates revealed regulation of the glyoxylate cycle. Our results indicate that both organisms actively engage in the interaction and that Salmonella adapts to the plant environment.


Asunto(s)
Adaptación Fisiológica , Salmonella enterica/fisiología , Solanum lycopersicum/microbiología , Microbiología Ambiental , Interacciones Microbiota-Huesped , Microbiología del Suelo , Transcriptoma
5.
Front Microbiol ; 8: 2410, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29270156

RESUMEN

SrfJ is an effector of the Salmonella pathogenicity island 2-encoded type III secretion system. Salmonella enterica serovar Typhimurium expresses srfJ under two disparate sets of conditions: media with low Mg2+ and low pH, imitating intravacuolar conditions, and media with myo-inositol (MI), a carbohydrate that can be used by Salmonella as sole carbon source. We investigated the molecular basis for this dual regulation. Here, we provide evidence for the existence of two distinct promoters that control the expression of srfJ. A proximal promoter, PsrfJ, responds to intravacuolar signals and is positively regulated by SsrB and PhoP and negatively regulated by RcsB. A second distant promoter, PiolE, is negatively regulated by the MI island repressor IolR. We also explored the in vivo activity of these promoters in different hosts. Interestingly, our results indicate that the proximal promoter is specifically active inside mammalian cells whereas the distant one is expressed upon Salmonella colonization of plants. Importantly, we also found that inappropriate expression of srfJ leads to reduced proliferation inside macrophages whereas lack of srfJ expression increases survival and decreases activation of defense responses in plants. These observations suggest that SrfJ is a relevant factor in the interplay between Salmonella and hosts of different kingdoms.

6.
Int J Mol Sci ; 14(8): 17122-46, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23965976

RESUMEN

Bacterial quorum sensing molecules not only grant the communication within bacterial communities, but also influence eukaryotic hosts. N-acyl-homoserine lactones (AHLs) produced by pathogenic or beneficial bacteria were shown to induce diverse reactions in animals and plants. In plants, the reaction to AHLs depends on the length of the lipid side chain. Here we investigated the impact of two bacteria on Arabidopsis thaliana, which usually enter a close symbiosis with plants from the Fabaceae (legumes) family and produce a long-chain AHL (Sinorhizobium meliloti) or a short-chain AHL (Rhizobium etli). We demonstrate that, similarly to the reaction to pure AHL molecules, the impact, which the inoculation with rhizosphere bacteria has on plants, depends on the type of the produced AHL. The inoculation with oxo-C14-HSL-producing S. meliloti strains enhanced plant resistance towards pathogenic bacteria, whereas the inoculation with an AttM lactonase-expressing S. meliloti strain did not. Inoculation with the oxo-C8-HSL-producing R. etli had no impact on the resistance, which is in agreement with our previous hypothesis. In addition, plants seem to influence the availability of AHLs in the rhizosphere. Taken together, this report provides new insights in the role of N-acyl-homoserine lactones in the inter-kingdom communication at the root surface.


Asunto(s)
Acil-Butirolactonas/metabolismo , Arabidopsis/microbiología , Raíces de Plantas/microbiología , Rhizobium/fisiología , Sinorhizobium/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Pseudomonas syringae/fisiología , Percepción de Quorum , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...