Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674143

RESUMEN

Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.


Asunto(s)
Peroxidación de Lípido , Osteosarcoma , Oxidación-Reducción , Estrés Oxidativo , Transducción de Señal , Osteosarcoma/metabolismo , Osteosarcoma/patología , Humanos , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Animales
2.
Front Biosci (Landmark Ed) ; 29(4): 153, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38682198

RESUMEN

Oxidative stress often affects the structure and metabolism of lipids, which in the case of polyunsaturated free fatty acids (PUFAs) leads to a self-catalysed chain reaction of lipid peroxidation (LPO). The LPO of PUFAs leads to the formation of various aldehydes, such as malondialdehyde, 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal, and 4-oxo-2-nonenal. Among the reactive aldehydes, 4-HNE is the major bioactive product of LPO, which has a high affinity for binding to proteins. This review briefly discusses the available information on the applicability of assessment options for 4-HNE and its protein adducts determined by immunosorbent assay (the 4-HNE-ELISA) in patients with various diseases known to be associated with oxidative stress, LPO, and 4-HNE. Despite the differences in the protocols applied and the antibodies used, all studies confirmed the usefulness of the 4-HNE-ELISA for research purposes. Since different protocols and the antibodies used could give different values when applied to the same samples, the 4-HNE-ELISA should be combined with other complementary analytical methods to allow comparisons between the values obtained in patients and in healthy individuals. Despite large variations, the studies reviewed in this paper have mostly shown significantly increased levels of 4-HNE-protein adducts in the samples obtained from patients when compared to healthy individuals. As with any other biomarker studied in patients, it is preferred to perform not only a single-time analysis but measurements at multiple time points to monitor the dynamics of the occurrence of oxidative stress and the systemic response to the disease causing it. This is especially important for acute diseases, as individual levels of 4-HNE-protein adducts in blood can fluctuate more than threefold within a few days depending on the state of health, as was shown for the COVID-19 patients.


Asunto(s)
Aldehídos , Ensayo de Inmunoadsorción Enzimática , Peroxidación de Lípido , Estrés Oxidativo , Humanos , Aldehídos/metabolismo , Ensayo de Inmunoadsorción Enzimática/métodos , Biomarcadores/metabolismo , Biomarcadores/sangre
3.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37762413

RESUMEN

Although the COVID-19 pandemic has ended, it is important to understand the pathology of severe SARS-CoV-2 infection associated with respiratory failure and high mortality. The plasma proteome, including protein modification by lipid peroxidation products in COVID-19 survivors (COVID-19; n = 10) and deceased individuals (CovDeath; n = 10) was compared in samples collected upon admission to the hospital, when there was no difference in their status, with that of healthy individuals (Ctr; n = 10). The obtained results show that COVID-19 development strongly alters the expression of proteins involved in the regulation of exocytosis and platelet degranulation (top 20 altered proteins indicated by analysis of variance; p-value (False Discovery Rate) cutoff at 5%). These changes were most pronounced in the CovDeath group. In addition, the levels of 4-hydroxynonenal (4-HNE) adducts increased 2- and 3-fold, whereas malondialdehyde (MDA) adducts increased 7- and 2.5-fold, respectively, in COVID-19 and CovDeath groups. Kinases and proinflammatory proteins were particularly affected by these modifications. Protein adducts with 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) were increased 2.5-fold in COVID-19 patients, including modifications of proteins such as p53 and STAT3, whereas CovDeath showed a decrease of approximately 60% compared with Ctr. This study for the first time demonstrates the formation of lipid metabolism products-protein adducts in plasma from survived and deceased COVID-19 patients, significantly distinguishing them, which may be a predictor of the course of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Peroxidación de Lípido , Exocitosis
4.
Int J Mol Sci ; 24(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686388

RESUMEN

The aim of this study was to evaluate selected parameters of redox signaling and inflammation in the granulocytes of COVID-19 patients who recovered and those who died. Upon admission, the patients did not differ in terms of any relevant clinical parameter apart from the percentage of granulocytes, which was 6% higher on average in those patients who died. Granulocytes were isolated from the blood of 15 healthy people and survivors and 15 patients who died within a week, and who were selected post hoc for analysis according to their matching gender and age. They differed only in the lethal outcome, which could not be predicted upon arrival at the hospital. The proteins level (respective ELISA), antioxidant activity (spectrophotometry), and lipid mediators (UPUPLC-MS) were measured in the peripheral blood granulocytes obtained via gradient centrifugation. The levels of Nrf2, HO-1, NFκB, and IL-6 were higher in the granulocytes of COVID-19 patients who died within a week, while the activity of cytoplasmic Cu,Zn-SOD and mitochondrial Mn-SOD and IL-2/IL-10 were lower in comparison to the levels observed in survivors. Furthermore, in the granulocytes of those patients who died, an increase in pro-inflammatory eicosanoids (PGE2 and TXB2), together with elevated cannabinoid receptors 1 and 2 (associated with a decrease in the anti-inflammatory 15d-PGJ2), were found. Hence, this study suggests that by triggering transcription factors, granulocytes activate inflammatory and redox signaling, leading to the production of pro-inflammatory eicosanoids while reducing cellular antioxidant capacity through SOD, thus expressing an altered response to COVID-19, which may result in the onset of systemic oxidative stress, ARDS, and the death of the patient.


Asunto(s)
Antioxidantes , COVID-19 , Humanos , Granulocitos , Estrés Oxidativo , Centrifugación
5.
Artículo en Inglés | MEDLINE | ID: mdl-37454721

RESUMEN

Alzheimer's disease (AD) is often not recognized or is diagnosed very late, which significantly reduces the effectiveness of available pharmacological treatments. Metabolomic analyzes have great potential for improving existing knowledge about the pathogenesis and etiology of AD and represent a novel approach towards discovering biomarkers that could be used for diagnosis, prognosis, and therapy monitoring. In this study, we applied the untargeted metabolomic approach to investigate the changes in biochemical pathways related to AD pathology. We used gas chromatography and liquid chromatography coupled to mass spectrometry (GC-MS and LC-MS, respectively) to identify metabolites whose levels have changed in subjects with AD diagnosis (N = 40) compared to healthy controls (N = 40) and individuals with mild cognitive impairment (MCI, N = 40). The GC-MS identified significant differences between groups in levels of metabolites belonging to the classes of benzene and substituted derivatives, carboxylic acids and derivatives, fatty acyls, hydroxy acids and derivatives, keto acids and derivatives, and organooxygen compounds. Most of the compounds identified by the LC-MS were various fatty acyls, glycerolipids and glycerophospholipids. All of these compounds were decreased in AD patients and in subjects with MCI compared to healthy controls. The results of the study indicate disturbed metabolism of lipids and amino acids and an imbalance of metabolites involved in energy metabolism in individuals diagnosed with AD, compared to healthy controls and MCI subjects.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Metabolómica , Metaboloma , Espectrometría de Masas , Biomarcadores
6.
Antioxidants (Basel) ; 12(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37107229

RESUMEN

It is well known that oxidative stress and lipid peroxidation (LPO) play a role in physiology and pathology. The most studied LPO product with pleiotropic capabilities is 4-hydroxynonenal (4-HNE). It is considered as an important mediator of cellular signaling processes and a second messenger of reactive oxygen species. The effects of 4-HNE are mainly attributed to its adduction with proteins. Whereas the Michael adducts thus formed are preferred in an order of potency of cysteine > histidine > lysine over Schiff base formation, it is not known which proteins are the preferred targets for 4-HNE under what physiological or pathological conditions. In this review, we briefly discuss the methods used to identify 4-HNE-protein adducts, the progress of mass spectrometry in deciphering the specific protein targets, and their biological relevance, focusing on the role of 4-HNE protein adducts in the adaptive response through modulation of the NRF2/KEAP1 pathway and ferroptosis.

7.
Biomolecules ; 13(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36671530

RESUMEN

An oxidative degradation product of the polyunsaturated fatty acids, 4-hydroxynonenal (4-HNE), is of particular interest in cancer research due to its concentration-dependent pleiotropic activities affecting cellular antioxidants, metabolism, and growth control. Although an increase in oxidative stress and lipid peroxidation was already associated with prostate cancer progression a few decades ago, the knowledge of the involvement of 4-HNE in prostate cancer tumorigenesis is limited. This study investigated the appearance of 4-HNE-protein adducts in prostate cancer tissue by immunohistochemistry using a genuine 4-HNE monoclonal antibody. Plasma samples of the same patients and samples of the healthy controls were also analyzed for the presence of 4-HNE-protein adducts, followed by metabolic profiling using LC-ESI-QTOF-MS and GC-EI-Q-MS. Finally, the analysis of the metabolic pathways affected by 4-HNE was performed. The obtained results revealed the absence of 4-HNE-protein adducts in prostate carcinoma tissue but increased 4-HNE-protein levels in the plasma of these patients. Metabolomics revealed a positive association of different long-chain and medium-chain fatty acids with the presence of prostate cancer. Furthermore, while linoleic acid positively correlated with the levels of 4-HNE-protein adducts in the blood of healthy men, no correlation was obtained for cancer patients indicating altered lipid metabolism in this case. The metabolic pathway of unsaturated fatty acids biosynthesis emerged as significantly affected by 4-HNE. Overall, this is the first study linking 4-HNE adduction to plasma proteins with specific alterations in the plasma metabolome of prostate cancer patients. This study revealed that increased 4-HNE plasma protein adducts could modulate the unsaturated fatty acids biosynthesis pathway. It is yet to be determined if this is a direct result of 4-HNE or whether they are produced by the same underlying mechanisms. Further mechanistic studies are needed to grasp the biological significance of the observed changes in prostate cancer tumorigenesis.


Asunto(s)
Aldehídos , Neoplasias de la Próstata , Masculino , Humanos , Peroxidación de Lípido , Aldehídos/metabolismo , Proteínas/metabolismo , Biomarcadores/metabolismo , Ácidos Grasos Insaturados , Carcinogénesis
8.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36430852

RESUMEN

Blood brain barrier (BBB) is a dynamic interface responsible for proper functioning of brain, but also a major obstacle for effective treatment of neurological diseases. Increased levels of free radicals, in high ferrous and high lipid content surrounding, induce lipid peroxidation, leading to production of 4-hydroxynonenal (HNE). HNE modifies all key proteins responsible for proper brain functioning thus playing a major role in the onset of neurological diseases. To investigate HNE effects on BBB permeability, we developed two in vitro BBB models-'physiological' and 'pathological'. The latter mimicked HNE modified extracellular matrix under oxidative stress conditions in brain pathologies. We showed that exogenous HNE induce activation of antioxidative defense systems by increasing catalase activity and glutathione content as well as reducing lipid peroxide levels in endothelial cells and astrocytes of 'physiological' model. While in 'pathological' model, exogenous HNE further increased lipid peroxidation levels of endothelial cells and astrocytes, followed by increase in Nrf2 and glutathione levels in endothelial cells. At lipid composition level, HNE caused increase in ω3 polyunsaturated fatty acid (PUFA) level in endothelial cells, followed by decrease in ω3 PUFA level and increase in monounsaturated fatty acid level in astrocytes. Using these models, we showed for the first time that HNE in 'pathological' model can reduce BBB permeability.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Permeabilidad , Glutatión/metabolismo , Estrés Oxidativo/fisiología , Antioxidantes/metabolismo , Peróxidos Lipídicos
9.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233111

RESUMEN

As a result of SARS-CoV-2 infection, inflammation develops, which promotes oxidative stress, leading to modification of phospholipid metabolism. Therefore, the aim of this study is to compare the effects of COVID-19 on the levels of phospholipid and free polyunsaturated fatty acids (PUFAs) and their metabolites produced in response to reactions with reactive oxygen species (ROS) and enzymes (cyclooxygenases-(COXs) and lipoxygenase-(LOX)) in the plasma of patients who either recovered or passed away within a week of hospitalization. In the plasma of COVID-19 patients, especially of the survivors, the actions of ROS and phospholipase A2 (PLA2) cause a decrease in phospholipid fatty acids level and an increase in free fatty acids (especially arachidonic acid) despite increased COXs and LOX activity. This is accompanied by an increased level in lipid peroxidation products (malondialdehyde and 8-isoprostaglandin F2α) and lipid mediators generated by enzymes. There is also an increase in eicosanoids, both pro-inflammatory as follows: thromboxane B2 and prostaglandin E2, and anti-inflammatory as follows: 15-deoxy-Δ-12,14-prostaglandin J2 and 12-hydroxyeicosatetraenoic acid, as well as endocannabinoids (anandamide-(AEA) and 2-arachidonylglycerol-(2-AG)) observed in the plasma of patients who recovered. Moreover, the expression of tumor necrosis factor α and interleukins (IL-6 and IL-10) is increased in patients who recovered. However, in the group of patients who died, elevated levels of N-oleoylethanolamine and N-palmitoylethanolamine are found. Since lipid mediators may have different functions depending on the onset of pathophysiological processes, a stronger pro-inflammatory response in patients who have recovered may be the result of the defensive response to SARS-CoV-2 in survivors associated with specific changes in the phospholipid metabolism, which could also be considered a prognostic factor.


Asunto(s)
COVID-19 , Endocannabinoides , Ácidos Araquidónicos/metabolismo , Dinoprostona/metabolismo , Eicosanoides/metabolismo , Endocannabinoides/metabolismo , Ácidos Grasos no Esterificados , Hospitalización , Hospitales , Humanos , Ácidos Hidroxieicosatetraenoicos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Peroxidación de Lípido , Lipooxigenasa/metabolismo , Malondialdehído , Fosfolipasas A2/metabolismo , Fosfolípidos/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2 , Sobrevivientes , Tromboxano B2 , Factor de Necrosis Tumoral alfa/metabolismo
10.
Antioxid Redox Signal ; 37(16-18): 1222-1233, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242098

RESUMEN

Significance: It is commonly believed that diabetes mellitus may be associated with cancer. Hence, diabetic patients are at higher risk for hepatocellular carcinoma, pancreatic cancer, colorectal cancer, and breast cancer, but the mechanisms that may link these two severe diseases are not well understood. Recent Advances: A number of factors have been suggested to promote tumorigenesis in diabetic patients, including insulin resistance, hyperglycemia, dyslipidemia, inflammation, and elevated insulin-like growth factor-1 (IGF-1), which may also promote pro-oxidants, and thereby alter redox homeostasis. The consequent oxidative stress associated with lipid peroxidation appears to be a possible pathogenic link between cancer and diabetes. Critical Issues: Having summarized the above aspects of diabetes and cancer pathology, we propose that the major bioactive product of oxidative degradation of polyunsaturated fatty acids (PUFAs), the reactive aldehyde 4-hydroxynonenal (4-HNE), which is also considered a second messenger of free radicals, may be the key pathogenic factor linking diabetes and cancer. Future Directions: Because the bioactivities of 4-HNE are cell-type and concentration-dependent, are often associated with inflammation, and are involved in signaling processes that regulate antioxidant activities, proliferation, differentiation, and apoptosis, we believe that further research in this direction could reveal options for better control of diabetes and cancer. Controlling the production of 4-HNE to avoid its cytotoxicity to normal but not cancer cells while preventing its diabetogenic activities could be an important aspect of modern integrative biomedicine. Antioxid. Redox Signal. 37, 1222-1233.


Asunto(s)
Diabetes Mellitus , Neoplasias , Humanos , Peroxidación de Lípido , Aldehídos , Neoplasias/etiología
11.
Biomolecules ; 12(10)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36291697

RESUMEN

Thorough understanding of metabolic changes, including lipidome alteration, associated with the development of COVID-19 appears to be crucial, as new types of coronaviruses are still reported. In this study, we analyzed the differences in the plasma phospholipid profiles of the deceased COVID-19 patients, those who recovered and healthy people. Due to identified abnormalities in plasma phospholipid profiles, deceased patients were further divided into two subgroups (D1 and D2). Increased levels of phosphatidylethanolamines (PE), phosphatidylcholines (PC) and phosphatidylserines (PS) were found in the plasma of recovered patients and the majority of deceased patients (first subgroup D1) compared to the control group. However, abundances of all relevant PE, PC and PS species decreased dramatically in the plasma of the second subgroup (D2) of five deceased patients. These patients also had significantly decreased plasma COX-2 activity when compared to the control, in contrast to unchanged and increased COX-2 activity in the plasma of the other deceased patients and recovered patients, respectively. Moreover, these five deceased patients were characterized by abnormally low CRP levels and tremendous increase in LDH levels, which may be the result of other pathophysiological disorders, including disorders of the immune system, liver damage and haemolytic anemia. In addition, an observed trend to decrease the autoantibodies against oxidative modifications of low-density lipoprotein (oLAb) titer in all, especially in deceased patients, indicate systemic oxidative stress and altered immune system that may have prognostic value in COVID-19.


Asunto(s)
COVID-19 , Fosfolípidos , Humanos , Fosfolípidos/metabolismo , Fosfatidiletanolaminas/metabolismo , Lipidómica , Fosfatidilserinas/metabolismo , Ciclooxigenasa 2 , Fosfatidilcolinas , Lipoproteínas LDL , Autoanticuerpos
12.
Antioxidants (Basel) ; 11(8)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-36009256

RESUMEN

Obesity and chronic oxidative stress, often being associated with each other in a vicious circle, are important factors of chronic diseases. Although it was usually considered to accompany aging and wealth, global trends show the increase in obesity among children even in Third World countries. Being manifested by an imbalance between energy consumption and food intake, obesity is characterized by an excessive or abnormal fat accumulation, impaired redox homeostasis and metabolic changes often associated with the self-catalyzed lipid peroxidation generating 4-hydroxynonenal, pluripotent bioactive peroxidation product of polyunsaturated fatty acids. Conservative methods targeting obesity produced only modest and transient results in the treatment of morbid obesity. Therefore, in recent years, surgery, primarily bariatric, became an attractive treatment for morbid obesity. Since adipose tissue is well known as a stress organ with pronounced endocrine functions, surgery results in redox balance and metabolic improvement of the entire organism. The source of bioactive lipids and lipid-soluble antioxidants, and the complex pathophysiology of lipid peroxidation should thus be considered from the aspects of personalized and integrative biomedicine to treat obesity in an appropriate way.

13.
Molecules ; 27(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36014561

RESUMEN

Several studies suggested the association of COVID-19 with systemic oxidative stress, in particular with lipid peroxidation and vascular stress. Therefore, this study aimed to evaluate the antioxidant signaling in the plasma of eighty-eight patients upon admission to the Clinical Hospital Dubrava in Zagreb, of which twenty-two died within a week, while the other recovered. The differences between the deceased and the survivors were found, especially in the reduction of superoxide dismutases (SOD-1 and SOD-2) activity, which was accompanied by the alteration in glutathione-dependent system and the intensification of the thioredoxin-dependent system. Reduced levels of non-enzymatic antioxidants, especially tocopherol, were also observed, which correlated with enhanced lipid peroxidation (determined by 4-hydroxynonenal (4-HNE) and neuroprostane levels) and oxidative modifications of proteins assessed as 4-HNE-protein adducts and carbonyl groups. These findings confirm the onset of systemic oxidative stress in patients with severe SARS-CoV-2, especially those who died from COVID-19, as manifested by strongly reduced tocopherol level and SOD activity associated with lipid peroxidation. Therefore, we propose that preventive and/or supplementary use of antioxidants, especially of lipophilic nature, could be beneficial for the treatment of COVID-19 patients.


Asunto(s)
Antioxidantes , COVID-19 , Antioxidantes/metabolismo , Glutatión/metabolismo , Humanos , Peroxidación de Lípido , Estrés Oxidativo , SARS-CoV-2 , Superóxido Dismutasa/metabolismo , Tocoferoles
14.
Free Radic Biol Med ; 189: 169-177, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35918015

RESUMEN

Posttraumatic stress disorder (PTSD) is complex neuropsychiatric disorder triggered by a traumatic event and characterized by the symptoms that represent large burden to patients, as well as to society. Lipidomic approach can be applied as a useful tool for discovery of novel diagnostic, prognostic and therapeutic lipid biomarkers of various disorders, whose etiology is complex and still unknown, including PTSD. Since changes in the levels of lipid metabolites might indicate impairments in various metabolic pathways and cellular processes, the aim of this lipidomic study was to determine altered levels of lipid compounds in PTSD. The study enrolled 235 male patients with combat PTSD and 241 healthy male control subjects. Targeted lipidomic analysis of plasma samples was conducted using reverse-phase liquid chromatography coupled with mass spectrometry. Lipids that have been analyzed belong to the group of ceramides, cholesterol esters, diacylglycerols, lysophosphatidylcholines, lysophosphatidylethanolamines, phosphatidylcholines, phosphatidylethanolamines, sphingomyelins and triglycerides. The levels of fifteen lipid compounds were found to be significantly different between PTSD patients and healthy control subjects, including four phosphatidylcholines, two phosphatidylethanolamines, five sphingomyelins, two cholesterol esters and two ceramides. The lipid metabolites whose levels significantly differed between patients with PTSD and control subjects are associated with various biological processes, including impairments of membrane integrity and function, mitochondrial dysfunction, inflammation and oxidative stress. As these processes might be associated with development and progression of PTSD, altered lipid compounds represent potential biomarkers that could facilitate the diagnosis of PTSD, prediction of the disease, as well as identification of novel treatment approaches in PTSD.


Asunto(s)
Lipidómica , Trastornos por Estrés Postraumático , Biomarcadores , Ceramidas , Ésteres del Colesterol , Humanos , Masculino , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas , Esfingomielinas , Trastornos por Estrés Postraumático/diagnóstico
16.
Biomolecules ; 12(6)2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35740969

RESUMEN

Inflammation and apoptosis are regulated by similar factors, including ultraviolet B (UVB) radiation and cannabinoids, which are metabolized by cyclooxygenase-2 (COX-2) into pro-apoptotic prostaglandin derivatives. Thus, the aim of this study was to evaluate the impact of cyclooxygenase-2 inhibition by celecoxib on the apoptosis of keratinocytes modulated by UVB, anandamide (AEA) and cannabidiol (CBD). For this purpose, keratinocytes were non-treated/treated with celecoxib and/or with UVB and CBD and AEA. Apoptosis was evaluated using microscopy, gene expressions using quantitate reverse-transcriptase polymerase chain reaction; prostaglandins using liquid chromatography tandem mass spectrometry and cyclooxygenase activity using spectrophotometry. UVB enhances the percentage of apoptotic keratinocytes, which can be caused by the increased prostaglandin generation by cyclooxygenase-2, or/and induced cannabinoid receptor 1/2 (CB1/2) expression. AEA used alone intensifies apoptosis by affecting caspase expression, and in UVB-irradiated keratinocytes, cyclooxygenase-2 activity is increased, while CBD acts as a cytoprotective when used with or without UVB. After COX-2 inhibition, UVB-induced changes are partially ameliorated, when anandamide becomes an anti-apoptotic agent. It can be caused by observed reduced generation of anandamide pro-apoptotic derivative prostaglandin-ethanolamide by COX. Therefore, products of cyclooxygenase-dependent lipid metabolism seem to play an important role in the modulation of UVB-induced apoptosis by cannabinoids, which is particularly significant in case of AEA as inhibition of cyclooxygenase reduces the generation of pro-apoptotic lipid mediators and thus prevents apoptosis.


Asunto(s)
Cannabinoides , Apoptosis , Cannabinoides/farmacología , Celecoxib/farmacología , Ciclooxigenasa 2/metabolismo , Queratinocitos/metabolismo , Metabolismo de los Lípidos , Prostaglandinas/metabolismo
17.
Front Biosci (Landmark Ed) ; 27(4): 119, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35468678

RESUMEN

BACKGROUND: It is commonly believed that cancer development is irreversible, organ-specific as well as systemic malignant disorder, often associated with harmful oxidative stress and inflammation. However, there are also well-documented cases of spontaneous cancer regression, the causative mechanisms of which are not understood. It is known that inflammation is a negative pathophysiological process that may support the development of cancer, but it is also believed that the immune system as well as oxidative stress play important roles in prevention of cancer development and defense against tumor progression. Hence, in animal models spontaneous regression of cancer could be mediated by rapid inflammatory response of granulocytes, acting against cancer mostly as innate immune response. In addition, the administration of granulocytes at the site of solid tumors can lead to tumor regression or can slow down tumor growth and extend the overall survival of animals. In both cases, similar to the radiotherapy, surgery and various chemotherapies, oxidative stress occurs generating lipid peroxidation product 4-hydroxynonenal (4-HNE). This "second messenger of free radicals" acts as growth regulating signaling molecule that exerts relatively selective cytotoxicity against cancer cells. CONCLUSIONS: We hypothesize that abundant inflammation and metabolic changes caused by cancer and oxidative stress producing of 4-HNE may be crucial mechanisms for spontaneous cancer regression.


Asunto(s)
Aldehídos , Neoplasias , Aldehídos/metabolismo , Animales , Granulocitos/metabolismo , Granulocitos/patología , Inflamación , Neoplasias/metabolismo , Estrés Oxidativo/fisiología
18.
Molecules ; 27(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35268568

RESUMEN

Oxidative stress and its end-products, such as 4-hydroxynonenal (HNE), initiate activation of the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)/Kelch Like ECH Associated Protein 1 (KEAP1) signaling pathway that plays a crucial role in the maintenance of cellular redox homeostasis. However, an involvement of 4-HNE and NRF2 in processes associated with the initiation of cancer, its progression, and response to therapy includes numerous, highly complex events. They occur through interactions between cancer and stromal cells. These events are dependent on many cell-type specific features. They start with the extent of NRF2 binding to its cytoplasmic repressor, KEAP1, and extend to the permissiveness of chromatin for transcription of Antioxidant Response Element (ARE)-containing genes that are NRF2 targets. This review will explore epigenetic molecular mechanisms of NRF2 transcription through the specific molecular anatomy of its promoter. It will explain the role of NRF2 in cancer stem cells, with respect to cancer therapy resistance. Additionally, it also discusses NRF2 involvement at the cross-roads of communication between tumor associated inflammatory and stromal cells, which is also an important factor involved in the response to therapy.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch
19.
Cells ; 11(3)2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35159254

RESUMEN

A recent comparison of clinical and inflammatory parameters, together with biomarkers of oxidative stress, in patients who died from aggressive COVID-19 and survivors suggested that the lipid peroxidation product 4-hydroxynonenal (4-HNE) might be detrimental in lethal SARS-CoV-2 infection. The current study further explores the involvement of inflammatory cells, systemic vascular stress, and 4-HNE in lethal COVID-19 using specific immunohistochemical analyses of the inflammatory cells within the vital organs obtained by autopsy of nine patients who died from aggressive SAR-CoV-2 infection. Besides 4-HNE, myeloperoxidase (MPO) and mitochondrial superoxide dismutase (SOD2) were analyzed alongside standard leukocyte biomarkers (CDs). All the immunohistochemical slides were simultaneously prepared for each analyzed biomarker. The results revealed abundant 4-HNE in the vital organs, but the primary origin of 4-HNE was sepsis-like vascular stress, not an oxidative burst of the inflammatory cells. In particular, inflammatory cells were often negative for 4-HNE, while blood vessels were always very strongly immunopositive, as was edematous tissue even in the absence of inflammatory cells. The most affected organs were the lungs with diffuse alveolar damage and the brain with edema and reactive astrocytes, whereas despite acute tubular necrosis, 4-HNE was not abundant in the kidneys, which had prominent SOD2. Although SOD2 in most cases gave strong immunohistochemical positivity similar to 4-HNE, unlike 4-HNE, it was always limited to the cells, as was MPO. Due to their differential expressions in blood vessels, inflammatory cells, and the kidneys, we think that SOD2 could, together with 4-HNE, be a potential link between a malfunctioning immune system, oxidative stress, and vascular stress in lethal COVID-19.


Asunto(s)
Aldehídos/metabolismo , COVID-19/metabolismo , Macrófagos Alveolares/metabolismo , Estrés Oxidativo , Linfocitos T/metabolismo , Anciano , Autopsia , Biomarcadores/metabolismo , COVID-19/epidemiología , COVID-19/virología , Niño , Femenino , Humanos , Peroxidación de Lípido , Macrófagos Alveolares/patología , Macrófagos Alveolares/virología , Masculino , Persona de Mediana Edad , Pandemias/prevención & control , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio , SARS-CoV-2/fisiología , Superóxido Dismutasa/metabolismo , Linfocitos T/patología , Linfocitos T/virología
20.
Free Radic Biol Med ; 181: 154-165, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35149216

RESUMEN

Regeneration is the process of replacing/restoring a damaged cell/tissue/organ to its full function and is limited respecting complexity of specific organ structures and the level of differentiation of the cells. Unlike physiological cell turnover, this tissue replacement form is activated upon pathological stimuli such as injury and/or disease that usually involves inflammatory response. To which extent will tissue repair itself depends on many factors and involves different mechanisms. Oxidative stress is one of them, either acute, as in case of traumatic brin injury or chronic, as in case of neurodegeneration, oxidative stress within brain involves lipid peroxidation, which generates reactive aldehydes, such as 4-hydroxynonenal (4-HNE). While 4-HNE is certainly neurotoxic and causes disruption of the blood brain barrier in case of severe injuries, it is also physiologically produced by glial cells, especially astrocytes, but its physiological roles within CNS are not understood. Because 4-HNE can regulate the response of the other cells in the body to stress, enhance their antioxidant capacities, proliferation and differentiation, we could assume that it may also have some beneficial role for neuroregeneration. Therefore, future studies on the relevance of 4-HNE for the interaction between neuronal cells, notably stem cells and reactive astrocytes might reveal novel options to better monitor and treat consequences or brain injuries, neurodegeneration and regeneration.


Asunto(s)
Aldehídos , Estrés Oxidativo , Antioxidantes , Astrocitos , Peroxidación de Lípido/fisiología , Neuronas/patología , Estrés Oxidativo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA