Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protoplasma ; 261(4): 725-733, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38286848

RESUMEN

Ovule morphology, megasporogenesis, and megagametogenesis processes were examined in Hydrocleys nymphoides, Alisma plantago-aquatica, and Sagittaria montevidensis. Each of these species belongs to a different clade within the Alismataceae family. It is worth mentioning that the genus Hydrocleys previously belonged to the Limnocharitaceae family but is now classified within the Alismataceae. Flowers in different developmental stages were processed following classical histological methods for their observation with bright-field microscope. The three species present an anatropous and bitegmic mature ovule. This is tenuinucellate in A. plantago-aquatica and S. montevidensis and pseudo-crassinucellate in H. nymphoides. Although all three species have the same type of megasporogenesis, they differ in the megagametogenesis and in the total number of nuclei and cells that form the mature gametophyte. H. nymphoides has a female gametophyte composed of four cells and four nuclei, while A. plantago-aquatica and S. montevidensis have a female gametophyte of five cells and six nuclei. The results are discussed according to the phylogenetic position of each of the species. Moreover, new types of megagametophyte development are described: Hydrocleys and Sagittaria types. The reduction of the female gametophyte with respect to the Polygonum type is found in families belonging to the ANA grade and in other aquatic families within the order Alismatales. We infer that the reduction in the number of cells and nuclei in the female gametophyte is characteristic of species that inhabit aquatic environments. Future studies in aquatic species belonging to other families would be necessary to confirm this hypothesis.


Asunto(s)
Sagittaria , Sagittaria/citología , Óvulo Vegetal/citología , Alisma/química , Alisma/citología , Alismataceae/citología
2.
Protoplasma ; 261(1): 3-13, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37338648

RESUMEN

Ceropegia lenewtonii (Plowes) Bruyns (=Huernia keniensis), currently belonging to the Huernia section of the genus Ceropegia, is a stapeliad species distributed in Africa and the Arabian Peninsula; but it is widely cultivated as ornamental in most parts of the world. This species of stapeliad presents "carrion flowers" associated with a sapromyophilous pollination syndrome since the flowers emit an unpleasant odor. In this work, we describe the floral morphology and anatomy of the calyx, corolla, and corona of this species based on bright-field and scanning electron microscope techniques. We detected the presence of diverse floral secretor tissues, and based on different histochemical tests, the principal component of the secreted substance was identified. We interpret the functions of the glands and compare with other related species of stapeliads. Our results indicate that flowers of C. lenewtonii present colleters in sepals, osmophores in corolla, and primary and secondary nectaries in corona. All these floral glands have specific functions that involve the processes of pollination and reproduction of this species, as well as protection and defense mechanisms.


Asunto(s)
Apocynaceae , Flores/química , Polinización , Odorantes
3.
Protoplasma ; 257(4): 1109-1121, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32152721

RESUMEN

Although the presence of scent was described for several species of Rhamnaceae, localization, morphology and structure of osmophores were unknown. We studied different species of the tribes Rhamneae (Rhamnoids clade), Pomaderreae, Colletieae, Paliureae (Ziziphoids clade) and the species Alphitonia excelsa (unknown tribe, Ziziphoids clade). We expect to have a better comprehension of these structures and provide information on which morphological and anatomical characters may support the phylogeny of the family. We localized the osmophores in the margins and top of the sepals using neutral red. Histochemical tests were made on transverse hand-cut sections of fresh sepals. Observations were made with stereoscopic and bright field microscopes, scanning and transmission electron microscopes. Papillae were observed in the zones with positive reaction to reagents. Different kinds of hairs are present in the sepal epidermis besides papillae. Epidermal cells present a striate cuticle with canals and cavities. Druses are abundant in most species. The ultrastructure of epidermal and subepidermal cells shows high metabolic activity: there are vesicles, mitochondria, endoplasmic reticulum, dictyosomes, plastids with lipids and starch. The vascularization is well developed and reaches the top of the sepal where the principal area of volatile components production is localized. The location and abundance of papillae are the most important traits that allow us recognize and characterize the osmophores in Rhamnaceae. There are no clear anatomical and morphological features exclusive of one clade or tribe. Therefore, in contrast to other sporophytic structures of this family, osmophores do not seem to have any systematic value.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Rhamnaceae/anatomía & histología , Rhamnaceae/ultraestructura
4.
Protoplasma ; 255(2): 501-515, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28913647

RESUMEN

The ultrastructure of the style and pollen tube pathway before, during and after anthesis were studied in 13 species belonging to the tribes Pomaderreae, Paliureae, Colletieae and Gouanieae (Ziziphoid clade) and Rhamneae (Rhamnoid clade) using light microscopy and transmission electron microscopy. The aim of this study is to provide new morphological characters useful for phylogenetic analysis at suprageneric level in Rhamnaceae. The patterns of pollen tube growth and the ultrastructural changes undergone by cells of the style were also described. Species of Rhamneae (Scutia buxifolia and Condalia buxifolia) have a solid style, with the transmitting tissue forming three independent strands (S. buxifolia) or a central, single horseshoe-shaped strand as seen in transversal section (C. buxifolia) which could derive from the fusion of formerly independent strands. In contrast, Pomaderreae, Gouanieae and Paliureae showed semi-solid styles, while in Colletieae, as previously reported, the style is hollow with two or three stylar canals. The style anatomy and the ultrastructure of the pollen tube pathway show that there is a tendency towards a solid style with a single strand of transmitting tissue within the family. The three-canalled hollow style could be the plesiomorphic state of the character "type of style" in the family, the semi-solid style the synapomorphic state and the solid style with three strands of transmitting tissue the apomorphic state, with the solid style with a single strand of transmitting tissue as the most derived state. Therefore, Colletieae would be the most basal tribe of the Ziziphoid clade.


Asunto(s)
Tubo Polínico/anatomía & histología , Rhamnaceae/anatomía & histología , Fertilización , Tubo Polínico/citología , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/ultraestructura , Rhamnaceae/citología , Rhamnaceae/ultraestructura
5.
Protoplasma ; 254(4): 1777-1790, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28083653

RESUMEN

Variations in pollen characters and tapetum behavior were recently acknowledged in the early-divergent family Nymphaeaceae and even within the genus Nymphaea, which probably is not monophyletic; some traits such as infratectum and tapetum type are also a matter of different interpretations. In this study, developmental characters of the pollen grains and tapetum in Nymphaea subgenus Hydrocallis are provided for the first time. Observations were made in N. amazonum, N. gardneriana, and N. prolifera using light, scanning, and transmission electron microscopy. Tapetum is of the secretory type and produces orbicules. At microspore and pollen grain stages, the distal and proximal walls differ considerably. This result supports the operculate condition of the aperture in Hydrocallis, and such aperture might be plesiomorphic for Nymphaeoideae. The infratectum is intermediate, composed of inter-columellae granular elements, robust columellae consisting of agglomerated granules, complete columellae, and fused columellae. Narrow microchannels are present and persist until the mature pollen grain stage. The membranous granular layer is often present in the pollen grains of Nymphaeaceae. In N. gardneriana, this layer is most probably a component of the intine because it is lost after acetolysis. Orbicules in the Nymphaeaceae are characterized as spherical or subspherical, with a smooth sporopolleninic wall that surrounds an electron-lucent core and with individual orbicules that usually merge to give irregular aggregations. The aperture, pollen wall ultrastructure, and the tapetum of the studied species are discussed in an evolutionary and systematic context, and these characters are also compared with those of other angiosperm lineages.


Asunto(s)
Nymphaea/ultraestructura , Polen/ultraestructura , Microscopía Electrónica de Transmisión , Nymphaea/crecimiento & desarrollo , Polen/crecimiento & desarrollo
6.
Protoplasma ; 253(4): 1125-33, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26277353

RESUMEN

Despite that there is some literature on pollen morphology of Rhamnaceae, studies addressing general aspects of the microsporogenesis, microgametogenesis, and anther development are rare. The aim of this paper is to describe the ultrastructure of pollen grain ontogeny with special attention to tapetum cytology in Hovenia dulcis. Anthers at different stages of development were processed for transmission and scanning electron microscopy, bright-field microscopy, and fluorescence microscopy. Different histochemical reactions were carried out. The ultrastructural changes observed during the development of the tapetal cells and pollen grains are described. Large vesicles containing carbohydrates occur in the tapetal cell cytoplasm during the early stages of pollen development. Its origin and composition are described and discussed. This is the first report on the ontogeny and ultrastructure of the pollen grain and related sporophytic structures of H. dulcis.


Asunto(s)
Gametogénesis en la Planta , Polen/crecimiento & desarrollo , Rhamnaceae/crecimiento & desarrollo , Vesículas Citoplasmáticas/fisiología , Vesículas Citoplasmáticas/ultraestructura , Polen/metabolismo , Polen/ultraestructura , Polisacáridos/metabolismo , Rhamnaceae/metabolismo , Rhamnaceae/ultraestructura
7.
Physiol Plant ; 146(2): 228-35, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22462568

RESUMEN

Stresses resulting from high transpiration demand induce adjustments in plants that lead to reductions of water loss. These adjustments, including changes in water absorption, transport and/or loss by transpiration, are crucial to normal plant development. Tomato wild type (WT) and phytochrome A (phyA)-mutant plants, fri1-1, were exposed to conditions of either low or high transpiration demand and several morphological and physiological changes were measured during stress conditions. Mutant plants rapidly wilted compared to WT plants after exposure to high evaporative demand. Root size and hydraulic conductivity did not show significant differences between genotypes, suggesting that water absorption and transport through this organ could not explain the observed phenotype. Moreover, stomatal density was similar between genotypes, whereas transpiration and stomatal conductance were both lower in mutant than in WT plants. This was accompanied by a lower stem-specific hydraulic conductivity in mutant plants, which was associated to lower xylem vessel number and transversal area in fri1-1 plants, producing a reduction in water supply to the leaves, which rapidly wilted under high evaporative demand. PhyA signaling might facilitate the adjustment to environments differing widely in water evaporative demand in part through the modulation of xylem dimensions.


Asunto(s)
Transporte Biológico/fisiología , Fitocromo A/metabolismo , Transpiración de Plantas/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Agua/metabolismo , Aclimatación , Variación Genética , Genotipo , Solanum lycopersicum/genética , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Tallos de la Planta/fisiología , Estomas de Plantas/fisiología , Especificidad de la Especie , Estrés Fisiológico , Luz Solar , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...