Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36614431

RESUMEN

In this work, the process of solid-state dewetting in FePd thin films and its influence on structural transformation and magnetic properties is presented. The morphology, structure and magnetic properties of the FePd system subjected to annealing at 600 °C for different times were studied. The analysis showed a strong correlation between the dewetting process and various physical phenomena. In particular, the transition between the A1 phase and L10 phase is strongly influenced by and inextricably connected with solid-state dewetting. Major changes were observed when the film lost its continuity, including a fast growth of the L10 phase, changes in the magnetization reversal behavior or the induction of magnetic spring-like behavior.

2.
Materials (Basel) ; 16(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36614641

RESUMEN

We describe the magnetic properties of thin iron films deposited on the nanoporous titanium oxide templates and analyze their dependance on nanopore radius. We then compare the results to a continuous iron film of the same thickness. Additionally, we investigate the evolution of the magnetic properties of these films after annealing. We demonstrate that the M(H) loops consist of two magnetic phases originating from the iron layer and iron oxides formed at the titanium oxide/iron interface. We perform deconvolution of hysteresis loops to extract information for each magnetic phase. Finally, we investigate the magnetic interactions between the phases and verify the presence of exchange coupling between them. We observe the altering of the magnetic properties by the nanopores as a magnetic hardening of the magnetic material. The ZFC-FC (Zero-field cooled/field cooled) measurements indicate the presence of a disordered glass state below 50 K, which can be explained by the formation of iron oxide at the titanium oxide-iron interface with a short-range magnetic order.

3.
Materials (Basel) ; 14(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34361274

RESUMEN

We studied the morphology, structure, and magnetic properties of Fe nanowires that were electrodeposited as a function of the electrolyte temperature. The nucleation mechanism followed instantaneous growth. At low temperatures, we observed an increase of the total charge reduced into the templates, thus suggesting a significant increase in the degree of pore filling. Scanning electron microscopy images revealed smooth nanowires without any characteristic features that would differentiate their morphology as a function of the electrolyte temperature. X-ray photoelectron spectroscopy studies indicated the presence of a polycarbonate coating that covered the nanowires and protected them against oxidation. The X-ray diffraction measurements showed peaks coming from the polycrystalline Fe bcc structure without any traces of the oxide phases. The crystallite size decreased with an increasing electrolyte temperature. The transmission electron microscopy measurements proved the fine-crystalline structure and revealed elongated crystallite shapes with a columnar arrangement along the nanowire. Mössbauer studies indicated a deviation in the magnetization vector from the normal direction, which agrees with the SQUID measurements. An increase in the electrolyte temperature caused a rise in the out of the membrane plane coercivity. The studies showed the oxidation resistance of the Fe nanowires deposited at elevated electrolyte temperatures.

4.
Materials (Basel) ; 14(9)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064377

RESUMEN

In this paper, we describe magnetoelectric properties of metal/metal-oxide/metal junctions based on anodized metal oxides. Specifically, we use Ti and Fe metallic layers separated by the porous metal-oxides of iron or titanium formed by the anodization method. Thus, we prepare double junctions with at least one ferromagnetic layer and measure magnetoresistance, as well as their current-voltage and magnetic characteristics. We find that magnetoresistance depends on that junction composition and discuss the nature of differential resistance calculated from I-V characteristics. Our findings show that a top metallic layer and the interface between this layer and anodized oxide, where strong interatomic diffusion is expected, have the strongest influence on this observed behavior.

5.
Materials (Basel) ; 13(22)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238366

RESUMEN

Nanotechnology is a very attractive tool for tailoring the surface of an orthopedic implant to optimize its interaction with the biological environment. Nanostructured interfaces are promising, especially for orthopedic applications. They can not only improve osseointegration between the implant and the living bone but also may be used as drug delivery platforms. The nanoporous structure can be used as a drug carrier to the surrounding tissue, with the intention to accelerate tissue-implant integration as well as to reduce and treat bacterial infections occurring after implantation. Titanium oxide nanotubes are promising for such applications; however, their brittle nature could be a significantly limiting factor. In this work, we modified the topography of commercially used titanium foil by the anodization process and hydrothermal treatment. As a result, we obtained a crystalline nanoporous u-shaped structure (US) of anodized titanium oxide with improved resistance to scratch compared to TiO2 nanotubes. The US titanium substrate was successfully modified with hydroxyapatite coating and investigated for bioactivity. Results showed high bioactivity in simulated body fluid (SBF) after two weeks of incubation.

6.
ACS Appl Mater Interfaces ; 12(35): 39926-39934, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805907

RESUMEN

Development of modern spintronic devices requires materials exhibiting specific magnetic effects. In this paper, we investigate a magnetization reversal mechanism in a [Co/Pdx]7/CoO/[Co/Pdy]7 thin-film composite, where an antiferromagnet is sandwiched between a hard and a soft ferromagnets with different coercivities. The antiferromagnet/ferromagnet interfaces give rise to the exchange bias effect. The application of soft and hard ferromagnetic films causes exchange-spring-like behavior, while the choice of the Co/Pd multilayers provides large out-of-plane magnetic anisotropy. We observed that the magnitude and the sign of the exchange bias anisotropy field are related to the arrangement of the magnetic moments in the antiferromagnetic layer. This ordering is induced by the spin orientation present in neighboring ferromagnetic films, which is, in turn, dependent on the orientation and strength of the external magnetic field.

7.
Materials (Basel) ; 13(15)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707828

RESUMEN

Using a two-carriers model and the Hikami-Larkin-Nagaoka (HLN) theory, we investigate the influence of large area patterning on magnetotransport properties in bismuth thin films with a thickness of 50 nm. The patterned systems have been produced by means of nanospheres lithography complemented by RF-plasma etching leading to highly ordered antidot arrays with the hexagonal symmetry and a variable antidot size. Simultaneous measurements of transverse and longitudinal magnetoresistance in a broad temperature range provided comprehensive data on transport properties and enabled us to extract the values of charge carrier densities and mobilities. Weak antilocalization signatures observed at low temperatures provided information on spin-orbit scattering length ranging from 20 to 30 nm, elastic scattering length of approx. 60 nm, and strong dependence on temperature phase coherence length. We show that in the absence of antidots the charge carrier transport follow 2-dimensional behavior and the dimensionality for phase-coherent processes changes from two to three dimensions at temperature higher than 10 K. For the antidot arrays, however, a decrease of the power law dephasing exponent is observed which is a sign of the 1D-2D crossover caused by the geometry of the system. This results in changes of scattering events probability and phase coherence lengths depending on the antidot diameters, which opens up opportunity to tailor the magnetotransport characteristics.

8.
Nanomaterials (Basel) ; 10(6)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486431

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) are promising drug delivery carriers and hyperthermia agents for the treatment of cancer. However, to ensure their safety in vivo, SPIONs must be modified in order to prevent unwanted iron release. Thus, SPIONs were coated with silica layers of different morphologies: non-porous (@SiO2), mesoporous (@mSiO2) or with a combination of non-porous and mesoporous layers (@SiO2@mSiO2) deposited via a sol-gel method. The presence of SiO2 drastically changed the surface properties of the nanoparticles. The zeta potential changed from 19.6 ± 0.8 mV for SPIONs to -26.1 ± 0.1 mV for SPION@mSiO2. The Brunauer-Emmett-Teller (BET) surface area increased from 7.54 ± 0.02 m2/g for SPIONs to 101.3 ± 2.8 m2/g for SPION@mSiO2. All types of coatings significantly decreased iron release (at least 10 fold as compared to unmodified SPIONs). SPIONs and SPION@mSiO2 were tested in vitro in contact with human lung epithelial cells (A549 and BEAS-2B). Both nanoparticle types were cytocompatible, although some delay in proliferation was observed for BEAS-2B cells as compared to A549 cells, which was correlated with increased cell velocity and nanoparticles uptake.

9.
Sensors (Basel) ; 20(11)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498287

RESUMEN

The p-n heterostructures of CuO-Ga2O3 obtained by magnetron sputtering technology in a fully reactive mode (deposition in pure oxygen) were tested under exposure to low acetone concentrations. After deposition, the films were annealed at previously confirmed conditions (400 °C/4 h/synthetic air) and further investigated by utilization of X-ray diffraction (XRD), X-ray reflectivity (XRR), energy-dispersive X-ray spectroscopy (EDS). The gas-sensing behavior was tested in the air/acetone atmosphere in the range of 0.1-1.25 ppm, as well as at various relative humidity (RH) levels (10-85%). The highest responses were obtained for samples based on the CuO-Ga2O3 (4% at. Ga).

10.
Nanoscale ; 11(18): 8930-8939, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31017139

RESUMEN

A highly versatile and scalable path to obtain buried magnetic nanostructures within alloy thin films, while maintaining a flat topography, is described. A magnetic pattern of nanoscale periodicity is generated over ∼cm2 areas by employing a B2 → A2 structural transition in the prototype Fe60Al40 thin alloy films. The phase transition was induced in the confined regions via ion-irradiation through self-assembled nanosphere masks. In this way, large area patterns of a hexagonal symmetry of ferromagnetic nanostructures embedded within a paramagnetic Fe60Al40 thin film are realized. The depth and lateral distribution of the induced magnetization was investigated by magnetometry and microscopy methods. Magnetic contrast imaging as well as simulations shows that the obtained magnetic structures are well defined, with the magnetic behavior tunable via the mask geometry.

11.
Nanomaterials (Basel) ; 8(10)2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30301148

RESUMEN

We present NiO/Ni composite particles with face-centered cubic (fcc) structure prepared by a pulsed laser irradiation of NiO nanoparticles dispersed in liquid. The sizes of particles and the Ni content in NiO/Ni composites were controlled by tuning the laser parameters, such as laser fluence and irradiation time. We found that the weight fraction of Ni has a significant impact on magnetic properties of composite particles. Large exchange bias (HEB) and coercivity field (HC) were observed at 5 K due to the creation of heterojunctions at interfaces of ferromagnetic Ni and antiferromagnetic NiO. For the NiO/Ni composites with 80% of NiO we have observed the largest values of exchange bias (175 Oe) and coercive field (950 Oe), but the increase of Ni weight fraction resulted in the decrease of both HC and HEB values.

12.
ACS Appl Mater Interfaces ; 9(38): 33250-33256, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28885819

RESUMEN

Magnetic nanostructures revealing exchange bias effect have gained a lot of interest in recent years due to their possible applications in modern devices with various functionalities. In this paper, we present our studies on patterned [CoO/Co/Pd]10 multilayer where ferromagnetic material is in a form of clusters, instead of being a continuous layer. The system was patterned using nanosphere lithography technique which resulted in creation of an assembly of well-ordered antidots or islands over a large substrate area. We found that the overall hysteresis loop of the films consists of hard and soft components. The hard component hysteresis loop exhibits a large exchange bias field up to -11 kOe. The patterning process causes a slight increase of the exchange field as the antidot radius rises. We also found that the material on edges of the structures gives rise to a soft unbiased magnetization component.

13.
ACS Appl Mater Interfaces ; 8(41): 28159-28165, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27648930

RESUMEN

Magnetic systems exhibiting an exchange bias effect are being considered as materials for applications in data storage devices, sensors, and biomedicine. Because the size of new magnetic devices is being continuously reduced, the influence of thermally induced instabilities in magnetic order has to be taken into account during their fabrication process. In this study, we show the influence of superparamagnetism on the magnetic properties of an exchange-biased [CoO/Co/Pd]10 multilayer. We find that the process of progressive thermal blocking of the superparamagnetic clusters causes an unusually fast rise of the exchange anisotropy field and coercivity and promotes easy-axis switching to the out-of-plane direction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...