Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(37): e2204717119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36040867

RESUMEN

The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein. Although these differences in spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome that may also affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through interference with innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other nonspike mutations on SARS-CoV-2 pathogenesis, we synthesized both viruses possessing deletions in the accessory genes as well as viruses where the WA-1 spike is replaced by each variant spike gene in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to both WA-1 and the full variant viruses. Our work has revealed that the accessory proteins contribute to SARS-CoV-2 pathogenesis and the nonspike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host. This work suggests that while spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may alter clinical disease presentation.


Asunto(s)
COVID-19 , Mutación , SARS-CoV-2 , Proteínas Reguladoras y Accesorias Virales , Virulencia , COVID-19/virología , Humanos , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas Reguladoras y Accesorias Virales/genética , Virulencia/genética , Replicación Viral/genética
2.
Nucleic Acids Res ; 42(14): e111, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24914053

RESUMEN

Toward achieving rapid and large scale genome modification directly in a target organism, we have developed a new genome engineering strategy that uses a combination of bioinformatics aided design, large synthetic DNA and site-specific recombinases. Using Cre recombinase we swapped a target 126-kb segment of the Escherichia coli genome with a 72-kb synthetic DNA cassette, thereby effectively eliminating over 54 kb of genomic DNA from three non-contiguous regions in a single recombination event. We observed complete replacement of the native sequence with the modified synthetic sequence through the action of the Cre recombinase and no competition from homologous recombination. Because of the versatility and high-efficiency of the Cre-lox system, this method can be used in any organism where this system is functional as well as adapted to use with other highly precise genome engineering systems. Compared to present-day iterative approaches in genome engineering, we anticipate this method will greatly speed up the creation of reduced, modularized and optimized genomes through the integration of deletion analyses data, transcriptomics, synthetic biology and site-specific recombination.


Asunto(s)
Ingeniería Genética/métodos , Recombinación Genética , Deleción Cromosómica , ADN/biosíntesis , Escherichia coli/genética , Genoma Bacteriano , Genómica/métodos , Integrasas/metabolismo , Biología Sintética/métodos
3.
Sci Transl Med ; 5(185): 185ra68, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23677594

RESUMEN

During the 2009 H1N1 influenza pandemic, vaccines for the virus became available in large quantities only after human infections peaked. To accelerate vaccine availability for future pandemics, we developed a synthetic approach that very rapidly generated vaccine viruses from sequence data. Beginning with hemagglutinin (HA) and neuraminidase (NA) gene sequences, we combined an enzymatic, cell-free gene assembly technique with enzymatic error correction to allow rapid, accurate gene synthesis. We then used these synthetic HA and NA genes to transfect Madin-Darby canine kidney (MDCK) cells that were qualified for vaccine manufacture with viral RNA expression constructs encoding HA and NA and plasmid DNAs encoding viral backbone genes. Viruses for use in vaccines were rescued from these MDCK cells. We performed this rescue with improved vaccine virus backbones, increasing the yield of the essential vaccine antigen, HA. Generation of synthetic vaccine seeds, together with more efficient vaccine release assays, would accelerate responses to influenza pandemics through a system of instantaneous electronic data exchange followed by real-time, geographically dispersed vaccine production.


Asunto(s)
Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Pandemias/prevención & control , Vacunas Sintéticas/inmunología , Animales , Línea Celular , Simulación por Computador , Perros , Genes Sintéticos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H7N9 del Virus de la Influenza A/inmunología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Neuraminidasa/genética , Virus Reordenados/inmunología , Reproducibilidad de los Resultados , Carga Viral
4.
Proc Natl Acad Sci U S A ; 105(51): 20404-9, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19073939

RESUMEN

We previously reported assembly and cloning of the synthetic Mycoplasma genitalium JCVI-1.0 genome in the yeast Saccharomyces cerevisiae by recombination of six overlapping DNA fragments to produce a 592-kb circle. Here we extend this approach by demonstrating assembly of the synthetic genome from 25 overlapping fragments in a single step. The use of yeast recombination greatly simplifies the assembly of large DNA molecules from both synthetic and natural fragments.


Asunto(s)
ADN/biosíntesis , Genoma Bacteriano/genética , Mycoplasma genitalium/genética , Oligodesoxirribonucleótidos/genética , Levaduras/genética , Clonación Molecular/métodos , Oligodesoxirribonucleótidos/metabolismo , Recombinación Genética
5.
Science ; 319(5867): 1215-20, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18218864

RESUMEN

We have synthesized a 582,970-base pair Mycoplasma genitalium genome. This synthetic genome, named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 except MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known to tolerate transposon insertions. Overlapping "cassettes" of 5 to 7 kilobases (kb), assembled from chemically synthesized oligonucleotides, were joined by in vitro recombination to produce intermediate assemblies of approximately 24 kb, 72 kb ("1/8 genome"), and 144 kb ("1/4 genome"), which were all cloned as bacterial artificial chromosomes in Escherichia coli. Most of these intermediate clones were sequenced, and clones of all four 1/4 genomes with the correct sequence were identified. The complete synthetic genome was assembled by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae, then isolated and sequenced. A clone with the correct sequence was identified. The methods described here will be generally useful for constructing large DNA molecules from chemically synthesized pieces and also from combinations of natural and synthetic DNA segments.


Asunto(s)
Clonación Molecular , ADN Bacteriano/síntesis química , Genoma Bacteriano , Genómica/métodos , Mycoplasma genitalium/genética , Secuencia de Bases , Cromosomas Artificiales Bacterianos , Cromosomas Artificiales de Levadura , ADN Recombinante , Escherichia coli/genética , Vectores Genéticos , Oligodesoxirribonucleótidos/síntesis química , Plásmidos , Recombinación Genética , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Transformación Genética
6.
Genomics ; 84(3): 565-76, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15498463

RESUMEN

LMX1B is a LIM-homeodomain transcription factor required for the normal development of dorsal limb structures, the glomerular basement membrane, the anterior segment of the eye, and dopaminergic and serotonergic neurons. Heterozygous loss-of-function mutations in LMX1B cause nail patella syndrome (NPS). To further understand LMX1B gene regulation and to identify pathogenic mutations within the coding region, a detailed analysis of LMX1B gene structure was undertaken. 5' -RACE and primer extension identified a long 5' -untranslated region of 1.3 kb that contains two upstream open-reading frames (uORFs). Transient transfection assays showed that sequences required for basal promoter activity extend no further than 112 bp upstream. An additional 47 mutations have been identified in the coding region, as well as nine deletions of large portions of the gene, but not in the promoter or highly conserved intronic sequences. The range of mutations and the identification of uORFs suggest further complexity in the regulation of LMX1B expression.


Asunto(s)
Proteínas de Homeodominio/genética , Mutación/genética , Sistemas de Lectura Abierta/genética , Transcripción Genética/genética , Secuencia de Bases , Southern Blotting , Análisis Mutacional de ADN , Cartilla de ADN , Componentes del Gen , Humanos , Proteínas con Homeodominio LIM , Luciferasas , Datos de Secuencia Molecular , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Factores de Transcripción , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...