Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(10): e31266, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38807873

RESUMEN

Warfarin, a widely prescribed anticoagulant, is highly effective for various coagulation disorders. However, its efficacy is limited by a narrow therapeutic index and frequent drug interactions, especially those involving metabolism by Cytochrome P450 (CYP450) enzymes. Piperine, found in black and long pepper, possesses blood-thinning properties and has been observed to inhibit CYP3A and CYP2C enzymes linked to warfarin metabolism. This study investigated the effect of piperine on warfarin metabolism in liver microsomes using a rapid and sensitive HPLC-Fluorescence method. The use of PFP (pentafluorophenyl) column with core shell particles provided the selectivity and resolution to resolve warfarin and its 4-, 6-, 7-, and 10-hydroxy metabolites in addition to the internal standard naproxen in less than 3 min. This is the fastest analytical assay for warfarin and its major metabolites reported to date, making it ideal for metabolic studies. The applicability of the method was demonstrated by monitoring the metabolism of S-warfarin in human and rat liver microsomes, and evaluating the inhibitory effect of piperine on metabolite formation. The results showed that piperine inhibited the formation of the major metabolite, 7-hydroxywarfarin, with half-maximal inhibitory concentration (IC50) 14.2 µM and 3.2 µM in human and rat liver microsomes, respectively. Furthermore, coagulation studies in vitro using rat plasma showed that piperine does not affect prothrombin time (PT) and activated partial thromboplastin time (aPTT). This study suggested that piperine may present a potential drug interaction with warfarin at the metabolism level, but has no direct effect on the activation of the extrinsic or intrinsic coagulation cascades. Further clinical investigation is therefore required, as piperine may increase the bioavailability of warfarin, thus increasing risk of serious adverse events in patients.

2.
J Pharm Biomed Anal ; 232: 115423, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146497

RESUMEN

Tivozanib is a recently approved tyrosine kinase inhibitor for the treatment of renal cell carcinoma. In this work, two new HPLC methods coupled with fluorescence (FLD), or photodiode array detectors (PDA) were developed and used for the first time for tivozanib quantification in rat plasma and liver microsomes. The described methods were efficient with a 4-min runtime employing a Gemini-NX C18 column (50 × 2.1 mm, 3 µm) and a mobile phase of acetonitrile and ammonium acetate buffer (pH 4.7, 10 mM) (40:60, v/v) delivered at a flow rate of 0.4 mL/min. The use of HPLC-FLD allowed the quantification of 50 ng/ mL tivozanib using only 100 µL rat plasma. The HPLC-FLD method was validated according to the US food and drug administration (FDA) bioanalytical guidelines and was applied successfully in a rat pharmacokinetic study (n = 7) following oral administration of 1 mg/ kg tivozanib. Furthermore, HPLC-PDA was used for monitoring the depletion of 1 µM (454.9 ng/mL) tivozanib in rat liver microsomes and was applied to study the effect of dexamethasone induction on tivozanib metabolism in vitro. Results showed that dexamethasone enhanced the intrinsic clearance of tivozanib by 60 % suggesting a potential drug-drug interaction at the metabolism level. Dexamethasone is commonly used in the management of cancer disease and thus coadministration with tivozanib therapy may cause treatment failure in patients. The simplicity, speed and cost-effectiveness of the reported methods are ideal for supporting in vivo and in vitro tivozanib studies, including drug-drug interaction studies, particularly in bioanalytical labs lacking LC-MS/MS capabilities.


Asunto(s)
Dexametasona , Espectrometría de Masas en Tándem , Ratas , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados
3.
Molecules ; 25(12)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580506

RESUMEN

Leukotriene B4 (LTB4) is a potent, proinflammatory lipid mediator implicated in the pathologies of an array of inflammatory diseases and cancer. The biosynthesis of LTB4 is regulated by the leukotriene A4 hydrolase (LTA4H). Compounds capable of limiting the formation of LTB4, through selective inhibition of LTA4H, are expected to provide potent anti-inflammatory and anti-cancer agents. The aim of the current study is to obtain potential LTA4H inhibitors using computer-aided drug design. A hybrid 3D structure-based pharmacophore model was generated based on the crystal structure of LTA4H in complex with bestatin. The generated pharmacophore was used in a virtual screen of the Maybridge database. The retrieved hits were extensively filtered, then docked into the active site of the enzyme. Finally, they were consensually scored to yield five hits as potential LTA4H inhibitors. Consequently, the selected hits were purchased and their biological activity assessed in vitro against the epoxide hydrolase activity of LTA4H. The results were very promising, with the most active compound showing 73.6% inhibition of the basal epoxide hydrolase activity of LTA4H. The results from this exploratory study provide valuable information for the design and development of more potent and selective inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Epóxido Hidrolasas/química , Inflamación/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Dominio Catalítico/efectos de los fármacos , Dominio Catalítico/genética , Diseño de Fármacos , Inhibidores Enzimáticos/uso terapéutico , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/ultraestructura , Humanos , Inflamación/patología , Simulación del Acoplamiento Molecular , Neoplasias/patología , Relación Estructura-Actividad
4.
Pharmaceuticals (Basel) ; 11(1)2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29517998

RESUMEN

(1) Background: Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with Tobramycin were prepared using a solvent-evaporation method. (2) Methods: The NPs were coated with low molecular weight chitosan (LMWC) to enhance the mucoadhesiveness of PLGA-NPs. The following w/w ratios of tobramycin to LMWC were prepared: control (0:0.50), F0 (1:0.25), F0.5 (1:0.5), and F1 (1:1). (3) Results: The results showed that the size of the particles increased from 220.7 nm to 575.77 nm as the concentration of LMWC used in the formulation increased. The surface charge was also affected by the amount of LMWC, where uncoated-PLGA nanoparticles had negative charges (-2.8 mV), while coated-PLGA NPs had positive charges (+33.47 to +50.13 mV). SEM confirmed the size and the spherical homogeneous morphology of the NPs. Coating the NPs with LMWC enhanced the mucoadhesive properties of the NPs and sustained the tobramycin release over two days. Finally, all NPs had antimicrobial activity that increased as the amount of LMWC increased. (4) Conclusion: In conclusion, the formulation of mucoadhesive, controlled-release, tobramycin-LMWC-PLGA nanoparticles for the treatment of P. aeruginosa in cystic fibrosis patients is possible, and their properties could be controlled by controlling the concentration of LMWC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...