Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1304682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516010

RESUMEN

Lettuce is an economically major leafy vegetable that is affected by numerous diseases. One of the most devastating diseases of lettuce is white mold caused by Sclerotinia sclerotiorum. Control methods for this fungus are limited due to the development of genetic resistance to commonly used fungicides, the large number of hosts and the long-term survival of sclerotia in soil. To elaborate a new and more sustainable approach to contain this pathogen, 1,210 Pseudomonas strains previously isolated from agricultural soils in Canada were screened for their antagonistic activity against S. sclerotiorum. Nine Pseudomonas strains showed strong in vitro inhibition in dual-culture confrontational assays. Whole genome sequencing of these strains revealed their affiliation with four phylogenomic subgroups within the Pseudomonas fluorescens group, namely Pseudomonas corrugata, Pseudomonas asplenii, Pseudomonas mandelii, and Pseudomonas protegens. The antagonistic strains harbor several genes and gene clusters involved in the production of secondary metabolites, including mycin-type and peptin-type lipopeptides, and antibiotics such as brabantamide, which may be involved in the inhibitory activity observed against S. sclerotiorum. Three strains also demonstrated significant in planta biocontrol abilities against the pathogen when either inoculated on lettuce leaves or in the growing substrate of lettuce plants grown in pots. They however did not impact S. sclerotiorum populations in the rhizosphere, suggesting that they protect lettuce plants by altering the fitness and the virulence of the pathogen rather than by directly impeding its growth. These results mark a step forward in the development of biocontrol products against S. sclerotiorum.

2.
Front Microbiol ; 14: 1198131, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426009

RESUMEN

Climate change is increasingly affecting agriculture through droughts, high salinity in soils, heatwaves, and floodings, which put intense pressure on crops. This results in yield losses, leading to food insecurity in the most affected regions. Multiple plant-beneficial bacteria belonging to the genus Pseudomonas have been shown to improve plant tolerance to these stresses. Various mechanisms are involved, including alteration of the plant ethylene levels, direct phytohormone production, emission of volatile organic compounds, reinforcement of the root apoplast barriers, and exopolysaccharide biosynthesis. In this review, we summarize the effects of climate change-induced stresses on plants and detail the mechanisms used by plant-beneficial Pseudomonas strains to alleviate them. Recommendations are made to promote targeted research on the stress-alleviating potential of these bacteria.

3.
Microorganisms ; 10(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35336236

RESUMEN

Rhizosphere colonization by phytobeneficial Pseudomonas spp. is pivotal in triggering their positive effects on plant health. Many Pseudomonas spp. Determinants, involved in rhizosphere colonization, have already been deciphered. However, few studies have explored the role played by specific plant genes in rhizosphere colonization by these bacteria. Using isogenic Arabidopsis thaliana mutants, we studied the effect of 20 distinct plant genes on rhizosphere colonization by two phenazine-producing P. chlororaphis strains of biocontrol interest, differing in their colonization abilities: DTR133, a strong rhizosphere colonizer and ToZa7, which displays lower rhizocompetence. The investigated plant mutations were related to root exudation, immunity, and root system architecture. Mutations in smb and shv3, both involved in root architecture, were shown to positively affect rhizosphere colonization by ToZa7, but not DTR133. While these strains were not promoting plant growth in wild-type plants, increased plant biomass was measured in inoculated plants lacking fez, wrky70, cbp60g, pft1 and rlp30, genes mostly involved in plant immunity. These results point to an interplay between plant genotype, plant growth and rhizosphere colonization by phytobeneficial Pseudomonas spp. Some of the studied genes could become targets for plant breeding programs to improve plant-beneficial Pseudomonas rhizocompetence and biocontrol efficiency in the field.

4.
Microorganisms ; 10(1)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35056636

RESUMEN

Type III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines translocating effector proteins into the cytoplasm of eukaryotic cells. They have been intensively studied for their important roles in animal and plant bacterial diseases. Over the past two decades, genome sequencing has unveiled their ubiquitous distribution in many taxa of Gram-negative bacteria, including plant-beneficial ones. Here, we discuss the distribution and functions of the T3SS in two agronomically important bacterial groups: the symbiotic nodule-forming nitrogen-fixing rhizobia and the free-living plant-beneficial Pseudomonas spp. In legume-rhizobia symbiosis, T3SSs and their cognate effectors play important roles, including the modulation of the plant immune response and the initiation of the nodulation process in some cases. In plant-beneficial Pseudomonas spp., the roles of T3SSs are not fully understood, but pertain to plant immunity suppression, biocontrol against eukaryotic plant pathogens, mycorrhization facilitation, and possibly resistance against protist predation. The diversity of T3SSs in plant-beneficial bacteria points to their important roles in multifarious interkingdom interactions in the rhizosphere. We argue that the gap in research on T3SSs in plant-beneficial bacteria must be bridged to better understand bacteria/eukaryotes rhizosphere interactions and to support the development of efficient plant-growth promoting microbial inoculants.

5.
Front Microbiol ; 13: 1038888, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620043

RESUMEN

Lettuce is a major vegetable crop worldwide that is affected by numerous bacterial pathogens, including Xanthomonas hortorum pv. vitians, Pseudomonas cichorii, and Pectobacterium carotovorum. Control methods are scarce and not always effective. To develop new and sustainable approaches to contain these pathogens, we screened more than 1,200 plant-associated Pseudomonas strains retrieved from agricultural soils for their in vitro antagonistic capabilities against the three bacterial pathogens under study. Thirty-five Pseudomonas strains significantly inhibited some or all three pathogens. Their genomes were fully sequenced and annotated. These strains belong to the P. fluorescens and P. putida phylogenomic groups and are distributed in at least 27 species, including 15 validly described species. They harbor numerous genes and clusters of genes known to be involved in plant-bacteria interactions, microbial competition, and biocontrol. Strains in the P. putida group displayed on average better inhibition abilities than strains in the P. fluorescens group. They carry genes and biosynthetic clusters mostly absent in the latter strains that are involved in the production of secondary metabolites such as 7-hydroxytropolone, putisolvins, pyochelin, and xantholysin-like and pseudomonine-like compounds. The presence of genes involved in the biosynthesis of type VI secretion systems, tailocins, and hydrogen cyanide also positively correlated with the strains' overall inhibition abilities observed against the three pathogens. These results show promise for the development of biocontrol products against lettuce bacterial pathogens, provide insights on some of the potential biocontrol mechanisms involved, and contribute to public Pseudomonas genome databases, including quality genome sequences on some poorly represented species.

6.
mSphere ; 6(3): e0042721, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34077259

RESUMEN

Phenazine-producing Pseudomonas spp. are effective biocontrol agents that aggressively colonize the rhizosphere and suppress numerous plant diseases. In this study, we compared the ability of 63 plant-beneficial phenazine-producing Pseudomonas strains representative of the worldwide diversity to inhibit the growth of three major potato pathogens: the oomycete Phytophthora infestans, the Gram-positive bacterium Streptomyces scabies, and the ascomycete Verticillium dahliae. The 63 Pseudomonas strains are distributed among four different subgroups within the P. fluorescens species complex and produce different phenazine compounds, namely, phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), 2-hydroxyphenazine-1-carboxylic acid, and 2-hydroxphenazine. Overall, the 63 strains exhibited contrasted levels of pathogen inhibition. Strains from the P. chlororaphis subgroup inhibited the growth of P. infestans more effectively than strains from the P. fluorescens subgroup. Higher inhibition was not associated with differential levels of phenazine production nor with specific phenazine compounds. The presence of additional biocontrol-related traits found in P. chlororaphis was instead associated with higher P. infestans inhibition. Inhibition of S. scabies by the 63 strains was more variable, with no clear taxonomic segregation pattern. Inhibition values did not correlate with phenazine production nor with specific phenazine compounds. No additional synergistic biocontrol-related traits were found. Against V. dahliae, PCN producers from the P. chlororaphis subgroup and PCA producers from the P. fluorescens subgroup exhibited greater inhibition. Additional biocontrol-related traits potentially involved in V. dahliae inhibition were identified. This study represents a first step toward harnessing the vast genomic diversity of phenazine-producing Pseudomonas spp. to achieve better biological control of potato pathogens. IMPORTANCE Plant-beneficial phenazine-producing Pseudomonas spp. are effective biocontrol agents, thanks to the broad-spectrum antibiotic activity of the phenazine antibiotics they produce. These bacteria have received considerable attention over the last 20 years, but most studies have focused only on the ability of a few genotypes to inhibit the growth of a limited number of plant pathogens. In this study, we investigated the ability of 63 phenazine-producing strains, isolated from a wide diversity of host plants on four continents, to inhibit the growth of three major potato pathogens: Phytophthora infestans, Streptomyces scabies, and Verticillium dahliae. We found that the 63 strains differentially inhibited the three potato pathogens. These differences are in part associated with the nature and the quantity of the phenazine compounds being produced but also with the presence of additional biocontrol-related traits. These results will facilitate the selection of versatile biocontrol agents against pathogens.


Asunto(s)
Bacterias/efectos de los fármacos , Fenazinas/farmacología , Pseudomonas/química , Pseudomonas/genética , Solanum tuberosum/microbiología , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/patogenicidad , Agentes de Control Biológico/química , Agentes de Control Biológico/metabolismo , Variación Genética , Genoma Bacteriano , Fenazinas/química , Fenazinas/metabolismo , Phytophthora infestans/efectos de los fármacos , Phytophthora infestans/crecimiento & desarrollo , Pseudomonas/clasificación , Streptomyces/efectos de los fármacos , Streptomyces/crecimiento & desarrollo
7.
Comput Struct Biotechnol J ; 18: 3539-3554, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304453

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) actively colonize the soil portion under the influence of plant roots, called the rhizosphere. Many plant-beneficial Pseudomonas spp. have been characterized as PGPR. They are ubiquitous rod-shaped motile Gram-negative bacteria displaying a high metabolic versatility. Their capacity to protect plants from pathogens and improve plant growth closely depends on their rhizosphere colonization abilities. Various molecular and cellular mechanisms are involved in this complex process, such as chemotaxis, biofilm formation, secondary metabolites biosynthesis, metabolic versatility, and evasion of plant immunity. The burst in Pseudomonas spp. genome sequencing in recent years has been crucial to better understand how they colonize the rhizosphere. In this review, we discuss the recent advances regarding these mechanisms and the underlying bacterial genetic factors required for successful rhizosphere colonization.

8.
Appl Environ Microbiol ; 86(4)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31811040

RESUMEN

Bacterial rhizosphere colonization is critical for phytobeneficial rhizobacteria such as phenazine-producing Pseudomonas spp. To better understand this colonization process, potential metabolic and genomic determinants required for rhizosphere colonization were identified using a collection of 60 phenazine-producing Pseudomonas strains isolated from multiple plant species and representative of the worldwide diversity. Arabidopsis thaliana and Solanum tuberosum (potato) were used as host plants. Bacterial rhizosphere colonization was measured by quantitative PCR using a newly designed primer pair and TaqMan probe targeting a conserved region of the phenazine biosynthetic operon. The metabolic abilities of the strains were assessed on 758 substrates using Biolog phenotype microarray technology. These data, along with available genomic sequences for all strains, were analyzed in light of rhizosphere colonization. Strains belonging to the P. chlororaphis subgroup colonized the rhizospheres of both plants more efficiently than strains belonging to the P. fluorescens subgroup. Metabolic results indicated that the ability to use amines and amino acids was associated with an increase in rhizosphere colonization capability in A. thaliana and/or in S. tuberosum The presence of multiple genetic determinants in the genomes of the different strains involved in catabolic pathways and plant-microbe and microbe-microbe interactions correlated with increased or decreased rhizosphere colonization capabilities in both plants. These results suggest that the metabolic and genomic traits found in different phenazine-producing Pseudomonas strains reflect their rhizosphere competence in A. thaliana and S. tuberosum Interestingly, most of these traits are associated with similar rhizosphere colonizing capabilities in both plant species.IMPORTANCE Rhizosphere colonization is crucial for plant growth promotion and biocontrol by antibiotic-producing Pseudomonas spp. This colonization process relies on different bacterial determinants which partly remain to be uncovered. In this study, we combined a metabolic and a genomic approach to decipher new rhizosphere colonization determinants which could improve our understanding of this process in Pseudomonas spp. Using 60 distinct strains of phenazine-producing Pseudomonas spp., we show that rhizosphere colonization abilities correlated with both metabolic and genomic traits when these bacteria were inoculated on two distant plants, Arabidopsis thaliana and Solanum tuberosum Key metabolic and genomic determinants presumably required for efficient colonization of both plant species were identified. Upon further validation, these targets could lead to the development of simple screening tests to rapidly identify efficient rhizosphere colonizers.


Asunto(s)
Arabidopsis/microbiología , Genoma Bacteriano/fisiología , Fenazinas/metabolismo , Pseudomonas/fisiología , Rizosfera , Solanum tuberosum/microbiología , Pseudomonas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA