Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lab Invest ; 103(6): 100123, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36849037

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible central vision loss in the elderly. The pathology of neovascular age-related macular degeneration (nAMD), also known as wet AMD, is associated with an abnormal blood vessel growth in the eye and involves an imbalance of proangiogenic and antiangiogenic factors. Thrombospondin (TSP)-1 and TSP-2 are endogenous matricellular proteins that inhibit angiogenesis. TSP-1 is significantly diminished in eyes with AMD, although the mechanisms involved in its reduction are unknown. Granzyme B (GzmB) is a serine protease with an increased extracellular activity in the outer retina and choroid of human eyes with nAMD-related choroidal neovascularization (CNV). This study investigated whether TSP-1 and TSP-2 are GzmB substrates using in silico and cell-free cleavage assays and explored the relationship between GzmB and TSP-1 in human eyes with nAMD-related CNV and the effect of GzmB on TSP-1 in retinal pigment epithelial culture and an explant choroid sprouting assay (CSA). In this study, TSP-1 and TSP-2 were identified as GzmB substrates. Cell-free cleavage assays substantiated the GzmB proteolysis of TSP-1 and TSP-2 by showing dose-dependent and time-dependent cleavage products. TSP-1 and TSP-2 proteolysis were hindered by the inhibition of GzmB. In the retinal pigment epithelium and choroid of human eyes with CNV, we observed a significant inverse correlation between TSP-1 and GzmB, as indicated by lower TSP-1 and higher GzmB immunoreactivity. In CSA, the vascular sprouting area increased significantly with GzmB treatment and reduced significantly with TSP-1 treatment. Western blot showed significantly reduced expression of TSP-1 in GzmB-treated retinal pigment epithelial cell culture and CSA supernatant compared with that in controls. Together, our findings suggest that the proteolysis of antiangiogenic factors such as TSP-1 by extracellular GzmB might represent a mechanism through which GzmB may contribute to nAMD-related CNV. Future studies are needed to investigate whether pharmacologic inhibition of extracellular GzmB can mitigate nAMD-related CNV by preserving intact TSP-1.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Humanos , Anciano , Trombospondina 1/metabolismo , Granzimas/metabolismo , Proteolisis , Degeneración Macular/complicaciones , Degeneración Macular/metabolismo , Degeneración Macular/patología , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/etiología , Neovascularización Coroidal/metabolismo
2.
Br J Dermatol ; 189(3): 279-291, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652225

RESUMEN

BACKGROUND: Granzyme K (GzmK) is a serine protease with minimal presence in healthy tissues while abundant in inflamed tissues. Initially thought to play an exclusive role in immune-mediated cell death, extracellular GzmK can also promote inflammation. OBJECTIVES: To evaluate the role of GzmK in the pathogenesis of atopic dermatitis (AD), the most common inflammatory skin disease. METHODS: A panel of human AD and control samples was analysed to determine if GzmK is elevated. Next, to determine a pathological role for GzmK in AD-like skin inflammation, oxazolone-induced dermatitis was induced in GzmK-/- and wild-type (WT) mice. RESULTS: In human lesional AD samples, there was an increase in the number of GzmK+ cells compared with healthy controls. GzmK-/- mice exhibited reduced overall disease severity characterized by reductions in scaling, erosions and erythema. Surprisingly, the presence of GzmK did not notably increase the overall pro-inflammatory response or epidermal barrier permeability in WT mice; rather, GzmK impaired angiogenesis, increased microvascular damage and microhaemorrhage. Mechanistically, GzmK contributed to vessel damage through cleavage of syndecan-1, a key structural component of the glycocalyx, which coats the luminal surface of vascular endothelia. CONCLUSIONS: GzmK may provide a potential therapeutic target for skin conditions associated with persistent inflammation, vasculitis and pathological angiogenesis.


Asunto(s)
Dermatitis Atópica , Granzimas , Animales , Humanos , Ratones , Dermatitis Atópica/patología , Epidermis/metabolismo , Granzimas/metabolismo , Inflamación , Piel/patología
3.
Front Pharmacol ; 13: 980742, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204224

RESUMEN

Age-related ocular diseases are the leading cause of blindness in developed countries and constitute a sizable socioeconomic burden worldwide. Age-related macular degeneration (AMD) and Fuchs endothelial corneal dystrophy (FECD) are some of the most common age-related diseases of the retina and cornea, respectively. AMD is characterized by a breakdown of the retinal pigment epithelial monolayer, which maintains retinal homeostasis, leading to retinal degeneration, while FECD is characterized by degeneration of the corneal endothelial monolayer, which maintains corneal hydration status, leading to corneal edema. Both AMD and FECD pathogenesis are characterized by disorganized local extracellular matrix (ECM) and toxic protein deposits, with both processes linked to aberrant protease activity. Granzyme B (GrB) is a serine protease traditionally known for immune-mediated initiation of apoptosis; however, it is now recognized that GrB is expressed by a variety of immune and non-immune cells and aberrant extracellular localization of GrB substantially contributes to various age-related pathologies through dysregulated cleavage of ECM, tight junction, and adherens junction proteins. Despite growing recognition of GrB involvement in multiple age-related pathologies, its role in AMD and FECD remains poorly understood. This review summarizes the pathophysiology of, and similarities between AMD and FECD, outlines the current knowledge of the role of GrB in AMD and FECD, as well as hypothesizes putative contributions of GrB to AMD and FECD pathogenesis and highlights the therapeutic potential of pharmacologically inhibiting GrB as an adjunctive treatment for AMD and FECD.

4.
Sci Rep ; 12(1): 12622, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871073

RESUMEN

Pressure injuries, also known as pressure ulcers, are regions of localized damage to the skin and/or underlying tissue. Repeated rounds of ischemia-reperfusion (I/R) have a major causative role for tissue damage in pressure injury. Ischemia prevents oxygen/nutrient supply, and restoration of blood flow induces a burst of reactive oxygen species that damages blood vessels, surrounding tissues and can halt blood flow return. Minimizing the consequences of repeated I/R is expected to provide a protective effect against pressure injury. Sulfaphenazole (SP), an off patent sulfonamide antibiotic, is a potent CYP 2C6 and CYP 2C9 inhibitor, functioning to decrease post-ischemic vascular dysfunction and increase blood flow. The therapeutic effect of SP on pressure injury was therefore investigated in apolipoprotein E knockout mice, a model of aging susceptible to ischemic injury, which were subjected to repeated rounds of I/R-induced skin injury. SP reduced overall severity, improved wound closure and increased wound tensile strength compared to vehicle-treated controls. Saliently, SP restored tissue perfusion in and around the wound rapidly to pre-injury levels, decreased tissue hypoxia, and reduced both inflammation and fibrosis. SP also demonstrated bactericidal activity through enhanced M1 macrophage activity. The efficacy of SP in reducing thermal injury severity was also demonstrated. SP is therefore a potential therapeutic option for pressure injury and other ischemic skin injuries.


Asunto(s)
Úlcera por Presión , Daño por Reperfusión , Sulfafenazol , Animales , Ratones , Isquemia , Perfusión , Especies Reactivas de Oxígeno , Daño por Reperfusión/tratamiento farmacológico , Sulfafenazol/farmacología
5.
Gastroenterology ; 162(3): 877-889.e7, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34861219

RESUMEN

BACKGROUND & AIMS: Excessive shedding of apoptotic enterocytes into the intestinal lumen is observed in inflammatory bowel disease and is correlated with disease relapse. Based on their cytolytic capacity and surveillance behavior, we investigated whether intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) are actively involved in the shedding of enterocytes into the lumen. METHODS: Intravital microscopy was performed on GFP γδ T cell reporter mice treated with intraperitoneal lipopolysaccharide (10 mg/kg) for 90 minutes to induce tumor necrosis factor-mediated apoptosis. Cell shedding in various knockout or transgenic mice in the presence or absence of blocking antibody was quantified by immunostaining for ZO-1 funnels and cleaved caspase-3 (CC3). Granzyme A and granzyme B release from ex vivo-stimulated γδ IELs was quantified by enzyme-linked immunosorbent assay. Immunostaining for γδ T cell receptor and CC3 was performed on duodenal and ileal biopsies from controls and patients with Crohn's disease. RESULTS: Intravital microscopy of lipopolysaccharide-treated mice revealed that γδ IELs make extended contact with shedding enterocytes. These prolonged interactions require CD103 engagement by E-cadherin, and CD103 knockout or blockade significantly reduced lipopolysaccharide-induced shedding. Furthermore, we found that granzymes A and B, but not perforin, are required for cell shedding. These extracellular granzymes are released by γδ IELs both constitutively and after CD103/E-cadherin ligation. Moreover, we found that the frequency of γδ IEL localization to CC3-positive enterocytes is increased in Crohn's disease biopsies compared with healthy controls. CONCLUSIONS: Our results uncover a previously unrecognized role for γδ IELs in facilitating tumor necrosis factor-mediated shedding of apoptotic enterocytes via CD103-mediated extracellular granzyme release.


Asunto(s)
Antígenos CD/metabolismo , Enfermedad de Crohn/metabolismo , Enterocitos/fisiología , Granzimas/metabolismo , Cadenas alfa de Integrinas/metabolismo , Linfocitos Intraepiteliales/fisiología , Adolescente , Adulto , Animales , Antígenos CD/genética , Apoptosis , Cadherinas/metabolismo , Caspasa 3/metabolismo , Enfermedad de Crohn/patología , Duodeno/patología , Enterocitos/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Íleon/patología , Cadenas alfa de Integrinas/genética , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Linfocitos Intraepiteliales/enzimología , Linfocitos Intraepiteliales/patología , Microscopía Intravital , Yeyuno/inmunología , Yeyuno/patología , Lipopolisacáridos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
6.
NPJ Aging Mech Dis ; 7(1): 6, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674592

RESUMEN

Pressure injuries (PIs), also known as bedsores or pressure ulcers, are a major cause of death and morbidity in the elderly. The serine protease, Granzyme B (GzmB), contributes to skin aging and impaired wound healing. Aging is a major risk factor for PIs; thus, the role of GzmB in PI pathogenesis was investigated. GzmB levels in human PI tissue and wound fluids were markedly elevated. A causative role for GzmB was assessed in GzmB knockout (GzmB-/-) and wild-type (WT) mice using a murine model of PI. An apolipoprotein E knockout (ApoE-/-) model of aging and vascular dysfunction was also utilized to assess GzmB in a relevant age-related model better resembling tissue perfusion in the elderly. PI severity displayed no difference between young GzmB-/- and WT mice. However, in aged mice, PI severity was reduced in mice lacking GzmB. Mechanistically, GzmB increased vascular wall inflammation and impaired extracellular matrix remodeling. Together, GzmB is an important contributor to age-dependent impaired PI healing.

7.
Nat Commun ; 12(1): 302, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436591

RESUMEN

Pemphigoid diseases refer to a group of severe autoimmune skin blistering diseases characterized by subepidermal blistering and loss of dermal-epidermal adhesion induced by autoantibody and immune cell infiltrate at the dermal-epidermal junction and upper dermis. Here, we explore the role of the immune cell-secreted serine protease, granzyme B, in pemphigoid disease pathogenesis using three independent murine models. In all models, granzyme B knockout or topical pharmacological inhibition significantly reduces total blistering area compared to controls. In vivo and in vitro studies show that granzyme B contributes to blistering by degrading key anchoring proteins in the dermal-epidermal junction that are necessary for dermal-epidermal adhesion. Further, granzyme B mediates IL-8/macrophage inflammatory protein-2 secretion, lesional neutrophil infiltration, and lesional neutrophil elastase activity. Clinically, granzyme B is elevated and abundant in human pemphigoid disease blister fluids and lesional skin. Collectively, granzyme B is a potential therapeutic target in pemphigoid diseases.


Asunto(s)
Enfermedades Autoinmunes/enzimología , Enfermedades Autoinmunes/patología , Granzimas/antagonistas & inhibidores , Granzimas/metabolismo , Animales , Autoantígenos/metabolismo , Vesícula , Quimiocina CXCL2/metabolismo , Factores Quimiotácticos/farmacología , Modelos Animales de Enfermedad , Epidermólisis Ampollosa/enzimología , Epidermólisis Ampollosa/patología , Humanos , Inflamación/patología , Integrina alfa6/metabolismo , Interleucina-8/metabolismo , Infiltración Neutrófila/efectos de los fármacos , Colágenos no Fibrilares/metabolismo , Penfigoide Ampolloso/enzimología , Penfigoide Ampolloso/patología , Índice de Severidad de la Enfermedad , Colágeno Tipo XVII
8.
J Invest Dermatol ; 141(1): 36-47, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32504614

RESUMEN

Atopic dermatitis (AD) is the most common inflammatory skin condition. Skin barrier dysfunction is of major importance in AD because it facilitates allergen sensitization and systemic allergic responses. Long regarded as a pro-apoptotic protease, emerging studies indicate granzyme B (GzmB) to have extracellular roles involving the proteolytic cleavage of extracellular matrix, cell adhesion proteins, and basement membrane proteins. Minimally expressed in normal skin, GzmB is elevated in AD and is positively correlated with disease severity and pruritus. We hypothesized that GzmB contributes to AD through extracellular protein cleavage. A causative role for GzmB was assessed in an oxazolone-induced murine model of dermatitis, comparing GzmB-/- mice with wild-type mice, showing significant reductions in inflammation, epidermal thickness, and lesion formation in GzmB-/- mice. Topical administration of a small-molecule GzmB inhibitor reduced disease severity compared with vehicle-treated controls. Mechanistically, GzmB impaired epithelial barrier function through E-cadherin and FLG cleavage. GzmB proteolytic activity contributes to impaired epidermal barrier function and represents a valid therapeutic target for AD.


Asunto(s)
Cadherinas/metabolismo , Dermatitis Atópica/metabolismo , Granzimas/metabolismo , Oxazolona/efectos adversos , Proteínas S100/metabolismo , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/patología , Epidermis/metabolismo , Matriz Extracelular/metabolismo , Proteínas Filagrina , Humanos
9.
Cell Signal ; 76: 109804, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33035645

RESUMEN

Chronic inflammation and impaired wound healing play important roles in the pathophysiology of cardiovascular diseases. Moreover, the aberrant secretion of proteases plays a critical role in pathological tissue remodeling in chronic inflammatory conditions. Human Granzymes (Granule secreted enzymes - Gzms) comprise a family of five (GzmA, B, H, K, M) cell-secreted serine proteases. Although each unique in function and substrate specificities, Gzms were originally thought to share redundant, intracellular roles in cytotoxic lymphocyte-induced cell death. However, an abundance of evidence has challenged this dogma. It is now recognized, that individual Gzms exhibit unique substrate repertoires and functions both intracellularly and extracellularly. In the extracellular milieu, Gzms contribute to inflammation, vascular dysfunction and permeability, reduced cell adhesion, release of matrix-sequestered growth factors, receptor activation, and extracellular matrix cleavage. Despite these recent findings, the non-cytotoxic functions of Gzms in the context of cardiovascular disease pathogenesis remain poorly understood. Minimally detected in tissues and bodily fluids of normal individuals, GzmB is elevated in patients with acute coronary syndromes, coronary artery disease, and myocardial infarction. Pre-clinical animal models have exemplified the importance of GzmB in atherosclerosis, aortic aneurysm, and cardiac fibrosis as animals deficient in GzmB exhibit reduced tissue remodeling, improved disease phenotypes and increased survival. Although a role for GzmB in cardiovascular disease is described, further work to elucidate the mechanisms that underpin the remaining human Gzms activity in cardiovascular disease is necessary. The present review provides a summary of the pre-clinical and clinical evidence, as well as emerging areas of research pertaining to Gzms in tissue remodeling and cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Granzimas/fisiología , Animales , Humanos
10.
Front Immunol ; 11: 574, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318066

RESUMEN

Granzymes are a family of serine proteases first shown to be intracellular initiators of immune-mediated cell death in target pathogenic cells. In addition to its intracellular role, Granzyme B (GzmB) has important extracellular functions in immune regulation and extracellular matrix (ECM) degradation. Verified substrates of extracellular GzmB activity include tight junctional and ECM proteins. Interestingly, little is known about the activity of GzmB in the outer human retina, a tissue in which the degradation of the tight junctional contacts of retinal pigment epithelial (RPE) cells and within the external limiting membrane, as well as remodeling of the ECM in Bruch's membrane, cause the breakdown of the blood-retinal barrier and slowing of metabolite transport between neuroretina and choroidal blood supply. Such pathological changes in outer retina signal early events in the development of age-related macular degeneration (AMD), a multifactorial, chronic inflammatory eye disease. This study is the first to focus on the distribution of GzmB in the outer retina of the healthy and diseased post-mortem human eye. Our results revealed that GzmB is present in RPE and choroidal mast cells. More immunoreactive cells are present in older (>65 years) compared to younger (<55 years) donor eyes, and choroidal immunoreactive cells are more numerous in eyes with choroidal neovascularization (CNV), while RPE immunoreactive cells are more numerous in eyes with soft drusen, an early AMD event. In vitro studies demonstrated that RPE-derived tight junctional and ECM proteins are cleaved by exogenous GzmB stimulation. These results suggest that the increased presence of GzmB immunoreactive cells in outer retina of older (healthy) eyes as well as in diseased eyes with CNV (from AMD) and eyes with soft drusen exacerbate ECM remodeling in the Bruch's membrane and degradation of the blood-retinal barrier. Currently there are no treatments that prevent remodeling of the Bruch's membrane and/or the loss of function of the outer blood-retinal barrier, known to promote early AMD changes, such as drusen deposition, RPE dysfunction and pro-inflammation. Specific inhibitors of GzmB, already in preclinical studies for non-ocular diseases, may provide new strategies to stop these early events associated with the development of AMD.


Asunto(s)
Coroides/enzimología , Neovascularización Coroidal/enzimología , Matriz Extracelular/enzimología , Granzimas/metabolismo , Epitelio Pigmentado de la Retina/enzimología , Adulto , Anciano , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Masculino , Mastocitos/enzimología , Persona de Mediana Edad , Retina/enzimología , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...