Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Alzheimers Dement ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962867

RESUMEN

INTRODUCTION: Amyloid positron emission tomography (PET) acquisition timing impacts quantification. METHODS: In florbetaben (FBB) PET scans of 245 adults with and without cognitive impairment, we investigated the impact of post-injection acquisition time on Centiloids (CLs) across five reference regions. CL equations for FBB were derived using standard methods, using FBB data collected between 90 and 110 min with paired Pittsburgh compound B data. Linear mixed models and t-tests evaluated the impact of acquisition time on CL increases. RESULTS: CL values increased significantly over the scan using the whole cerebellum, cerebellar gray matter, and brainstem as reference regions, particularly in amyloid-positive individuals. In contrast, CLs based on white matter-containing reference regions decreased across the scan. DISCUSSION: The quantification of CLs in FBB PET imaging is influenced by both the overall scan acquisition time and the choice of reference region. Standardized acquisition protocols or the application of acquisition time-specific CL equations should be implemented in clinical protocols. HIGHLIGHTS: Acquisition timing affects florbetaben positron emission tomography (PET) scan quantification, especially in amyloid-positive participants. The impact of acquisition timing on quantification varies across common reference regions. Consistent acquisitions and/or appropriate post-injection adjustments are needed to ensure comparability of PET data.

2.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585744

RESUMEN

Microstructural tissue organization underlies the complex connectivity of the brain and controls properties of connective, muscle, and epithelial tissue. However, discerning microstructural architecture with high resolution for large fields of view remains prohibitive. We address this challenge with computational scattered light imaging (ComSLI), which exploits the anisotropic light scattering of aligned structures. Using a rotating lightsource and a high-resolution camera, ComSLI determines fiber architecture with micrometer resolution from histological sections across preparation and staining protocols. We show complex fiber architecture in brain and non-brain sections, including histological paraffin-embedded sections with various stains, and demonstrate its applicability on animal and human tissue, including disease cases with altered microstructure. ComSLI opens new avenues for investigating fiber architecture in new and archived sections across organisms, tissues, and diseases.

3.
IEEE Trans Biomed Eng ; PP2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683703

RESUMEN

OBJECTIVE: Wearable devices are developed to measure head impact kinematics but are intrinsically noisy because of the imperfect interface with human bodies. This study aimed to improve the head impact kinematics measurements obtained from instrumented mouthguards using deep learning to enhance traumatic brain injury (TBI) risk monitoring. METHODS: We developed one-dimensional convolutional neural network (1D-CNN) models to denoise mouthguard kinematics measurements for tri-axial linear acceleration and tri-axial angular velocity from 163 laboratory dummy head impacts. The performance of the denoising models was evaluated on three levels: kinematics, brain injury criteria, and tissue-level strain and strain rate. Additionally, we performed a blind test on an on-field dataset of 118 college football impacts and a test on 413 post-mortem human subject (PMHS) impacts. RESULTS: On the dummy head impacts, the denoised kinematics showed better correlation with reference kinematics, with relative reductions of 36% for pointwise root mean squared error and 56% for peak absolute error. Absolute errors in six brain injury criteria were reduced by a mean of 82%. For maximum principal strain and maximum principal strain rate, the mean error reduction was 35% and 69%, respectively. On the PMHS impacts, similar denoising effects were observed and the peak kinematics after denoising were more accurate (relative error reduction for 10% noisiest impacts was 75.6%). CONCLUSION: The 1D-CNN denoising models effectively reduced errors in mouthguard-derived kinematics measurements on dummy and PMHS impacts. SIGNIFICANCE: This study provides a novel approach for denoising head kinematics measurements in dummy and PMHS impacts, which can be further validated on more real-human kinematics data before real-world applications.

4.
Med Phys ; 51(7): 4827-4837, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38377383

RESUMEN

BACKGROUND: Dynamic contrast-enhanced ultrasound (DCE-US) is highly susceptible to motion artifacts arising from patient movement, respiration, and operator handling and experience. Motion artifacts can be especially problematic in the context of perfusion quantification. In conventional 2D DCE-US, motion correction (MC) algorithms take advantage of accompanying side-by-side anatomical B-Mode images that contain time-stable features. However, current commercial models of 3D DCE-US do not provide side-by-side B-Mode images, which makes MC challenging. PURPOSE: This work introduces a novel MC algorithm for 3D DCE-US and assesses its efficacy when handling clinical data sets. METHODS: In brief, the algorithm uses a pyramidal approach whereby short temporal windows consisting of three consecutive frames are created to perform local registrations, which are then registered to a master reference derived from a weighted average of all frames. We applied the algorithm to imaging studies from eight patients with metastatic lesions in the liver and assessed improvements in original versus motion corrected 3D DCE-US cine using: (i) frame-to-frame volumetric overlap of segmented lesions, (ii) normalized correlation coefficient (NCC) between frames (similarity analysis), and (iii) sum of squared errors (SSE), root-mean-squared error (RMSE), and r-squared (R2) quality-of-fit from fitted time-intensity curves (TIC) extracted from a segmented lesion. RESULTS: We noted improvements in frame-to-frame lesion overlap across all patients, from 68% ± 13% without correction to 83% ± 3% with MC (p = 0.023). Frame-to-frame similarity as assessed by NCC also improved on two different sets of time points from 0.694 ± 0.057 (original cine) to 0.862 ± 0.049 (corresponding MC cine) and 0.723 ± 0.066 to 0.886 ± 0.036 (p ≤ 0.001 for both). TIC analysis displayed a significant decrease in RMSE (p = 0.018) and a significant increase in R2 goodness-of-fit (p = 0.029) for the patient cohort. CONCLUSIONS: Overall, results suggest decreases in 3D DCE-US motion after applying the proposed algorithm.


Asunto(s)
Algoritmos , Medios de Contraste , Imagenología Tridimensional , Ultrasonografía , Humanos , Imagenología Tridimensional/métodos , Proyectos Piloto , Movimiento , Artefactos , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Hepáticas/diagnóstico por imagen
5.
IEEE Trans Biomed Eng ; 71(6): 1853-1863, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38224520

RESUMEN

OBJECTIVE: The machine-learning head model (MLHM) to accelerate the calculation of brain strain and strain rate, which are the predictors for traumatic brain injury (TBI), but the model accuracy was found to decrease sharply when the training/test datasets were from different head impacts types (i.e., car crash, college football), which limits the applicability of MLHMs to different types of head impacts and sports. Particularly, small sizes of target dataset for specific impact types with tens of impacts may not be enough to train an accurate impact-type-specific MLHM. METHODS: To overcome this, we propose data fusion and transfer learning to develop a series of MLHMs to predict the maximum principal strain (MPS) and maximum principal strain rate (MPSR). RESULTS: The strategies were tested on American football (338), mixed martial arts (457), reconstructed car crash (48) and reconstructed American football (36) and we found that the MLHMs developed with transfer learning are significantly more accurate in estimating MPS and MPSR than other models, with a mean absolute error (MAE) smaller than 0.03 in predicting MPS and smaller than [Formula: see text] in predicting MPSR on all target impact datasets. High performance in concussion detection was observed based on the MPS and MPSR estimated by the transfer-learning-based models. CONCLUSION: The MLHMs can be applied to various head impact types for rapidly and accurately calculating brain strain and strain rate. SIGNIFICANCE: This study enables developing MLHMs for the head impact type with limited availability of data, and will accelerate the applications of MLHMs.


Asunto(s)
Encéfalo , Aprendizaje Automático , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Fútbol Americano/lesiones , Lesiones Traumáticas del Encéfalo/fisiopatología , Cabeza/fisiología , Accidentes de Tránsito , Fenómenos Biomecánicos/fisiología , Modelos Biológicos
6.
J Nucl Med ; 65(2): 306-312, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071587

RESUMEN

Cerebral blood flow (CBF) may be estimated from early-frame PET imaging of lipophilic tracers, such as amyloid agents, enabling measurement of this important biomarker in participants with dementia and memory decline. Although previous methods could map relative CBF, quantitative measurement in absolute units (mL/100 g/min) remained challenging and has not been evaluated against the gold standard method of [15O]water PET. The purpose of this study was to develop and validate a minimally invasive quantitative CBF imaging method combining early [18F]florbetaben (eFBB) with phase-contrast MRI using simultaneous PET/MRI. Methods: Twenty participants (11 men and 9 women; 8 cognitively normal, 9 with mild cognitive impairment, and 3 with dementia; 10 ß-amyloid negative and 10 ß-amyloid positive; 69 ± 9 y old) underwent [15O]water PET, phase-contract MRI, and eFBB imaging in a single session on a 3-T PET/MRI scanner. Quantitative CBF images were created from the first 2 min of brain activity after [18F]florbetaben injection combined with phase-contrast MRI measurement of total brain blood flow. These maps were compared with [15O]water CBF using concordance correlation (CC) and Bland-Altman statistics for gray matter, white matter, and individual regions derived from the automated anatomic labeling (AAL) atlas. Results: The 2 methods showed similar results in gray matter ([15O]water, 55.2 ± 14.7 mL/100 g/min; eFBB, 55.9 ± 14.2 mL/100 g/min; difference, 0.7 ± 2.4 mL/100 g/min; P = 0.2) and white matter ([15O]water, 21.4 ± 5.6 mL/100 g/min; eFBB, 21.2 ± 5.3 mL/100 g/min; difference, -0.2 ± 1.0 mL/100 g/min; P = 0.4). The intrasubject CC for AAL-derived regions was high (0.91 ± 0.04). Intersubject CC in different AAL-derived regions was similarly high, ranging from 0.86 for midfrontal regions to 0.98 for temporal regions. There were no significant differences in performance between the methods in the amyloid-positive and amyloid-negative groups as well as participants with different cognitive statuses. Conclusion: We conclude that eFBB PET/MRI can provide robust CBF measurements, highlighting the capability of simultaneous PET/MRI to provide measurements of both CBF and amyloid burden in a single imaging session in participants with memory disorders.


Asunto(s)
Compuestos de Anilina , Disfunción Cognitiva , Demencia , Estilbenos , Masculino , Humanos , Femenino , Agua , Radioisótopos de Oxígeno , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética , Disfunción Cognitiva/diagnóstico por imagen , Circulación Cerebrovascular , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea
7.
medRxiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693520

RESUMEN

Background: At the center of the cortical cholinergic network, the nucleus basalis of Meynert (NBM) is crucial for the cognitive domains most vulnerable in PD. Preclinical evidence has demonstrated the positive impact of NBM deep brain stimulation (DBS) on cognition but early human trials have had mixed results. It is possible that DBS of the lateral NBM efferent white matter fiber bundle may be more effective at improving cognitive-motor function. However, precise tractography modelling is required to identify the optimal target for neurosurgical planning. Individualized tractography approaches have been shown to be highly effective for accurately identifying DBS targets but have yet to be developed for the NBM. Methods: Using structural and diffusion weighted imaging, we developed a tractography pipeline for precise individualized identification of the lateral NBM target tract. Using dice similarity coefficients, the reliability of the tractography outputs was assessed across three cohorts to investigate: 1) whether this manual pipeline is more reliable than an existing automated pipeline currently used in the literature; 2) the inter- and intra-rater reliability of our pipeline in research scans of patients with PD; and 3) the reliability and practicality of this pipeline in clinical scans of DBS patients. Results: The individualized manual pipeline was found to be significantly more reliable than the existing automated pipeline for both the segmentation of the NBM region itself (p<0.001) and the reconstruction of the target lateral tract (p=0.002). There was also no significant difference between the reliability of two different raters in the PD cohort (p=0.25), which showed high inter- (mean Dice coefficient >0.6) and intra-rater (mean Dice coefficient >0.7) reliability across runs. Finally, the pipeline was shown to be highly reliable within the clinical scans (mean Dice coefficient = 0.77). However, accurate reconstruction was only evident in 7/10 tracts. Conclusion: We have developed a reliable tractography pipeline for the identification and analysis of the NBM lateral tract in research and clinical grade imaging of healthy young adult and PD patient scans.

9.
Neurology ; 101(9): e953-e965, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37479529

RESUMEN

BACKGROUND AND OBJECTIVES: Repeated impacts in high-contact sports such as American football can affect the brain's microstructure, which can be studied using diffusion MRI. Most imaging studies are cross-sectional, do not include low-contact players as controls, or lack advanced tract-specific microstructural metrics. We aimed to investigate longitudinal changes in high-contact collegiate athletes compared with low-contact controls using advanced diffusion MRI and automated fiber quantification. METHODS: We examined brain microstructure in high-contact (football) and low-contact (volleyball) collegiate athletes with up to 4 years of follow-up. Inclusion criteria included university and team enrollment. Exclusion criteria included history of neurosurgery, severe brain injury, and major neurologic or substance abuse disorder. We investigated diffusion metrics along the length of tracts using nested linear mixed-effects models to ascertain the acute and chronic effects of subconcussive and concussive impacts, and associations between diffusion changes with clinical, behavioral, and sports-related measures. RESULTS: Forty-nine football and 24 volleyball players (271 total scans) were included. Football players had significantly divergent trajectories in multiple microstructural metrics and tracts. Longitudinal increases in fractional anisotropy and axonal water fraction, and decreases in radial/mean diffusivity and orientation dispersion index, were present in volleyball but absent in football players (all findings |T-statistic|> 3.5, p value <0.0001). This pattern was present in the callosum forceps minor, superior longitudinal fasciculus, thalamic radiation, and cingulum hippocampus. Longitudinal differences were more prominent and observed in more tracts in concussed football players (n = 24, |T|> 3.6, p < 0.0001). An analysis of immediate postconcussion scans (n = 12) demonstrated a transient localized increase in axial diffusivity and mean/radial kurtosis in the uncinate and cingulum hippocampus (|T| > 3.7, p < 0.0001). Finally, within football players, those with high position-based impact risk demonstrated increased intracellular volume fraction longitudinally (T = 3.6, p < 0.0001). DISCUSSION: The observed longitudinal changes seen in football, and especially concussed athletes, could reveal diminished myelination, altered axonal calibers, or depressed pruning processes leading to a static, nondecreasing axonal dispersion. This prospective longitudinal study demonstrates divergent tract-specific trajectories of brain microstructure, possibly reflecting a concussive and repeated subconcussive impact-related alteration of white matter development in football athletes.


Asunto(s)
Conmoción Encefálica , Fútbol Americano , Voleibol , Humanos , Estudios Transversales , Estudios Longitudinales , Estudios Prospectivos , Universidades , Conmoción Encefálica/diagnóstico por imagen
10.
ArXiv ; 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37332565

RESUMEN

Machine learning head models (MLHMs) are developed to estimate brain deformation for early detection of traumatic brain injury (TBI). However, the overfitting to simulated impacts and the lack of generalizability caused by distributional shift of different head impact datasets hinders the broad clinical applications of current MLHMs. We propose brain deformation estimators that integrates unsupervised domain adaptation with a deep neural network to predict whole-brain maximum principal strain (MPS) and MPS rate (MPSR). With 12,780 simulated head impacts, we performed unsupervised domain adaptation on on-field head impacts from 302 college football (CF) impacts and 457 mixed martial arts (MMA) impacts using domain regularized component analysis (DRCA) and cycle-GAN-based methods. The new model improved the MPS/MPSR estimation accuracy, with the DRCA method significantly outperforming other domain adaptation methods in prediction accuracy (p<0.001): MPS RMSE: 0.027 (CF) and 0.037 (MMA); MPSR RMSE: 7.159 (CF) and 13.022 (MMA). On another two hold-out testsets with 195 college football impacts and 260 boxing impacts, the DRCA model significantly outperformed the baseline model without domain adaptation in MPS and MPSR estimation accuracy (p<0.001). The DRCA domain adaptation reduces the MPS/MPSR estimation error to be well below TBI thresholds, enabling accurate brain deformation estimation to detect TBI in future clinical applications.

11.
Ann Neurol ; 94(3): 457-469, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37306544

RESUMEN

OBJECTIVE: Repetitive head trauma is common in high-contact sports. Cerebral blood flow (CBF) can measure changes in brain perfusion that could indicate injury. Longitudinal studies with a control group are necessary to account for interindividual and developmental effects. We investigated whether exposure to head impacts causes longitudinal CBF changes. METHODS: We prospectively studied 63 American football (high-contact cohort) and 34 volleyball (low-contact controls) male collegiate athletes, tracking CBF using 3D pseudocontinuous arterial spin labeling magnetic resonance imaging for up to 4 years. Regional relative CBF (rCBF, normalized to cerebellar CBF) was computed after co-registering to T1-weighted images. A linear mixed effects model assessed the relationship of rCBF to sport, time, and their interaction. Within football players, we modeled rCBF against position-based head impact risk and baseline Standardized Concussion Assessment Tool score. Additionally, we evaluated early (1-5 days) and delayed (3-6 months) post-concussion rCBF changes (in-study concussion). RESULTS: Supratentorial gray matter rCBF declined in football compared with volleyball (sport-time interaction p = 0.012), with a strong effect in the parietal lobe (p = 0.002). Football players with higher position-based impact-risk had lower occipital rCBF over time (interaction p = 0.005), whereas players with lower baseline Standardized Concussion Assessment Tool score (worse performance) had relatively decreased rCBF in the cingulate-insula over time (interaction effect p = 0.007). Both cohorts showed a left-right rCBF asymmetry that decreased over time. Football players with an in-study concussion showed an early increase in occipital lobe rCBF (p = 0.0166). INTERPRETATION: These results suggest head impacts may result in an early increase in rCBF, but cumulatively a long-term decrease in rCBF. ANN NEUROL 2023;94:457-469.


Asunto(s)
Conmoción Encefálica , Fútbol Americano , Humanos , Masculino , Conmoción Encefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Fútbol Americano/lesiones , Imagen por Resonancia Magnética , Circulación Cerebrovascular/fisiología
12.
Elife ; 122023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37166005

RESUMEN

Disentangling human brain connectivity requires an accurate description of nerve fiber trajectories, unveiled via detailed mapping of axonal orientations. However, this is challenging because axons can cross one another on a micrometer scale. Diffusion magnetic resonance imaging (dMRI) can be used to infer axonal connectivity because it is sensitive to axonal alignment, but it has limited spatial resolution and specificity. Scattered light imaging (SLI) and small-angle X-ray scattering (SAXS) reveal axonal orientations with microscopic resolution and high specificity, respectively. Here, we apply both scattering techniques on the same samples and cross-validate them, laying the groundwork for ground-truth axonal orientation imaging and validating dMRI. We evaluate brain regions that include unidirectional and crossing fibers in human and vervet monkey brain sections. SLI and SAXS quantitatively agree regarding in-plane fiber orientations including crossings, while dMRI agrees in the majority of voxels with small discrepancies. We further use SAXS and dMRI to confirm theoretical predictions regarding SLI determination of through-plane fiber orientations. Scattered light and X-ray imaging can provide quantitative micrometer 3D fiber orientations with high resolution and specificity, facilitating detailed investigations of complex fiber architecture in the animal and human brain.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Animales , Humanos , Chlorocebus aethiops , Rayos X , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
13.
Acta Biomater ; 164: 317-331, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37098400

RESUMEN

Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accurate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons. X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double- and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods. STATEMENT OF SIGNIFICANCE: To study how the nerve fibers in our brain are interconnected, scientists need to visualize their trajectories, which often cross one another. Here, we show the unique capacity of small-angle X-ray scattering (SAXS) to study these fiber crossings without use of labeling, taking advantage of SAXS's specificity to myelin - the insulating sheath that is wrapped around nerve fibers. We use SAXS to detect double and triple crossing fibers and unveil intricate crossings in mouse, pig, vervet monkey, and human brains. This non-destructive method can uncover complex fiber trajectories and validate other less specific imaging methods (e.g., MRI or microscopy), towards accurate mapping of neuronal connectivity in the animal and human brain.


Asunto(s)
Encéfalo , Humanos , Animales , Ratones , Porcinos , Chlorocebus aethiops , Haplorrinos , Dispersión del Ángulo Pequeño , Rayos X , Difracción de Rayos X , Encéfalo/diagnóstico por imagen
14.
Nature ; 615(7951): 292-299, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859543

RESUMEN

Emotional states influence bodily physiology, as exemplified in the top-down process by which anxiety causes faster beating of the heart1-3. However, whether an increased heart rate might itself induce anxiety or fear responses is unclear3-8. Physiological theories of emotion, proposed over a century ago, have considered that in general, there could be an important and even dominant flow of information from the body to the brain9. Here, to formally test this idea, we developed a noninvasive optogenetic pacemaker for precise, cell-type-specific control of cardiac rhythms of up to 900 beats per minute in freely moving mice, enabled by a wearable micro-LED harness and the systemic viral delivery of a potent pump-like channelrhodopsin. We found that optically evoked tachycardia potently enhanced anxiety-like behaviour, but crucially only in risky contexts, indicating that both central (brain) and peripheral (body) processes may be involved in the development of emotional states. To identify potential mechanisms, we used whole-brain activity screening and electrophysiology to find brain regions that were activated by imposed cardiac rhythms. We identified the posterior insular cortex as a potential mediator of bottom-up cardiac interoceptive processing, and found that optogenetic inhibition of this brain region attenuated the anxiety-like behaviour that was induced by optical cardiac pacing. Together, these findings reveal that cells of both the body and the brain must be considered together to understand the origins of emotional or affective states. More broadly, our results define a generalizable approach for noninvasive, temporally precise functional investigations of joint organism-wide interactions among targeted cells during behaviour.


Asunto(s)
Conducta Animal , Encéfalo , Emociones , Corazón , Animales , Ratones , Ansiedad/fisiopatología , Encéfalo/fisiología , Mapeo Encefálico , Emociones/fisiología , Corazón/fisiología , Conducta Animal/fisiología , Electrofisiología , Optogenética , Corteza Insular/fisiología , Frecuencia Cardíaca , Channelrhodopsins , Taquicardia/fisiopatología , Marcapaso Artificial
15.
Ann Biomed Eng ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36917295

RESUMEN

Protective headgear effects measured in the laboratory may not always translate to the field. In this study, we evaluated the impact attenuation capabilities of a commercially available padded helmet shell cover in the laboratory and on the field. In the laboratory, we evaluated the padded helmet shell cover's efficacy in attenuating impact magnitude across six impact locations and three impact velocities when equipped to three different helmet models. In a preliminary on-field investigation, we used instrumented mouthguards to monitor head impact magnitude in collegiate linebackers during practice sessions while not wearing the padded helmet shell covers (i.e., bare helmets) for one season and whilst wearing the padded helmet shell covers for another season. The addition of the padded helmet shell cover was effective in attenuating the magnitude of angular head accelerations and two brain injury risk metrics (DAMAGE, HARM) across most laboratory impact conditions, but did not significantly attenuate linear head accelerations for all helmets. Overall, HARM values were reduced in laboratory impact tests by an average of 25% at 3.5 m/s (range: 9.7 to 39.6%), 18% at 5.5 m/s (range: - 5.5 to 40.5%), and 10% at 7.4 m/s (range: - 6.0 to 31.0%). However, on the field, no significant differences in any measure of head impact magnitude were observed between the bare helmet impacts and padded helmet impacts. Further laboratory tests were conducted to evaluate the ability of the padded helmet shell cover to maintain its performance after exposure to repeated, successive impacts and across a range of temperatures. This research provides a detailed assessment of padded helmet shell covers and supports the continuation of in vivo helmet research to validate laboratory testing results.

16.
J Sport Health Sci ; 12(5): 619-629, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36921692

RESUMEN

BACKGROUND: Traumatic brain injury can be caused by head impacts, but many brain injury risk estimation models are not equally accurate across the variety of impacts that patients may undergo, and the characteristics of different types of impacts are not well studied. We investigated the spectral characteristics of different head impact types with kinematics classification. METHODS: Data were analyzed from 3262 head impacts from lab reconstruction, American football, mixed martial arts, and publicly available car crash data. A random forest classifier with spectral densities of linear acceleration and angular velocity was built to classify head impact types (e.g., football, car crash, mixed martial arts). To test the classifier robustness, another 271 lab-reconstructed impacts were obtained from 5 other instrumented mouthguards. Finally, with the classifier, type-specific, nearest-neighbor regression models were built for brain strain. RESULTS: The classifier reached a median accuracy of 96% over 1000 random partitions of training and test sets. The most important features in the classification included both low- and high-frequency features, both linear acceleration features and angular velocity features. Different head impact types had different distributions of spectral densities in low- and high-frequency ranges (e.g., the spectral densities of mixed martial arts impacts were higher in the high-frequency range than in the low-frequency range). The type-specific regression showed a generally higher R2 value than baseline models without classification. CONCLUSION: The machine-learning-based classifier enables a better understanding of the impact kinematics spectral density in different sports, and it can be applied to evaluate the quality of impact-simulation systems and on-field data augmentation.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Aprendizaje Automático , Humanos , Fenómenos Biomecánicos , Cabeza , Protectores Bucales
18.
Brain Connect ; 13(1): 28-38, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35678063

RESUMEN

Objective: In recent years, transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) has been established as a potential treatment option for movement disorders, including essential tremor (ET). So far, however, little is known about the impact of tcMRgFUS on structural connectivity. The objective of this study was to detect microstructural changes in tremor- and motor-related white matter tracts in ET patients treated with tcMRgFUS thalamotomy. Methods: Eleven patients diagnosed with ET were enrolled in this tcMRgFUS thalamotomy study. For each patient, 3 Tesla magnetic resonance imaging (3T MRI) including structural and diffusion MRI were acquired and the Clinical Rating Scale for Tremor was assessed before the procedure as well as 1 year after the treatment. Diffusion MRI tractography was performed to identify the cerebello-thalamo-cortical tract (CTCT), the medial lemniscus, and the corticospinal tract in both hemispheres on pre-treatment data. Pre-treatment tractography results were co-registered to post-treatment diffusion data. Diffusion tensor imaging (DTI) metrics, including fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD), were averaged across the tracts in the pre- and post-treatment data. Results: The mean value of tract-specific DTI metrics changed significantly within the thalamic lesion and in the CTCT on the treated side (p < 0.05). Changes of DTI-derived indices within the CTCT correlated well with lesion overlap (FA: r = -0.54, p = 0.04; MD: r = 0.57, p = 0.04); RD: r = 0.67, p = 0.036). Further, a trend was seen for the correlation between changes of DTI-derived indices within the CTCT and clinical improvement (FA: r = 0.58; p = 0.062; MD: r = -0.52, p = 0.64; RD: r = -0.61 p = 0.090). Conclusions: Microstructural changes were detected within the CTCT after tcMRgFUS, and these changes correlated well with lesion-tract overlap. Our results show that diffusion MRI is able to detect the microstructural effects of tcMRgFUS, thereby further elucidating the treatment mechanism, and ultimately to improve targeting prospectively. Impact statement The results of this study demonstrate microstructural changes within the cerebello-thalamo-cortical pathways 1 year after MR-guided focused ultrasound thalamotomy. Even more, microstructural changes within the cerebello-thalamo-cortical pathways correlated significantly with clinical outcome. These findings do not only highly emphasize the need of new targeting strategies for MR-guided focused ultrasound thalamotomy but also help to elucidate the treatment mechanism of it.


Asunto(s)
Temblor Esencial , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Temblor , Encéfalo , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Espectroscopía de Resonancia Magnética
19.
Front Hum Neurosci ; 16: 838692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911597

RESUMEN

Alzheimer's disease (AD) is a debilitating brain disorder that afflicts millions worldwide with no effective treatment. Currently, AD progression has primarily been characterized by abnormal accumulations of ß-amyloid within plaques and phosphorylated tau within neurofibrillary tangles, giving rise to neurodegeneration due to synaptic and neuronal loss. While ß-amyloid and tau deposition are required for clinical diagnosis of AD, presence of such abnormalities does not tell the complete story, and the actual mechanisms behind neurodegeneration in AD progression are still not well understood. Support for abnormal iron accumulation playing a role in AD pathogenesis includes its presence in the early stages of the disease, its interactions with ß-amyloid and tau, and the important role it plays in AD related inflammation. In this review, we present the existing evidence of pathological iron accumulation in the human AD brain, as well as discuss the imaging tools and peripheral measures available to characterize iron accumulation and dysregulation in AD, which may help in developing iron-based biomarkers or therapeutic targets for the disease.

20.
Ann Biomed Eng ; 50(11): 1596-1607, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35922726

RESUMEN

In a previous study, we found that the relationship between brain strain and kinematic features cannot be described by a generalized linear model across different types of head impacts. In this study, we investigate if such a linear relationship exists when partitioning head impacts using a data-driven approach. We applied the K-means clustering method to partition 3161 impacts from various sources including simulation, college football, mixed martial arts, and car crashes. We found piecewise multivariate linearity between the cumulative strain damage (CSDM; assessed at the threshold of 0.15) and head kinematic features. Compared with the linear regression models without partition and the partition according to the types of head impacts, K-means-based data-driven partition showed significantly higher CSDM regression accuracy, which suggested the presence of piecewise multivariate linearity across types of head impacts. Additionally, we compared the piecewise linearity with the partitions based on individual features used in clustering. We found that the partition with maximum angular acceleration magnitude at 4706 rad/s2 led to the highest piecewise linearity. This study may contribute to an improved method for the rapid prediction of CSDM in the future.


Asunto(s)
Conmoción Encefálica , Lesiones Encefálicas , Fútbol Americano , Humanos , Fenómenos Biomecánicos , Aceleración , Simulación por Computador , Cabeza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...